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RESUMO
Modelos chuva-vazdo podem auxiliar o gerenciamento de recursos hidricos,
principalmente na Amazbnia, regido marcada pela baixa densidade de
monitoramento hidrolégico, e assim beneficiar os usos multiplos da agua e o
adequado aproveitamento dos recursos hidricos. Este trabalho busca simular vazdes
diarias de cinco pequenas bacias hidrograficas da Amazonia, através da Rede
Neural Recorrente Nao linear Autorregressiva com Variavel Exogena (RNN-NARX).
Dados pluviométricos e fluviométricos diarios foram utilizados para simulagdo. As
funcbes de correlacdo cruzada e autocorrelagao parcial auxiliaram a determinagao
de dados defasados, entradas relevantes, com nivel de significancia de 5%. Além
disso, foi utilizado o algoritmo de retropropagacgao do erro Levenberg-Marquardt para
treinamento supervisionado das RNN-NARX. Também foram utilizados cinco indices
estatisticos e a contribuicao relativa de Garson de cada variavel de entrada para
avaliagao das simulacdes. Deste modo, as vazdes simuladas foram classificadas
entre o insatisfatério e o muito bom, além de apresentar tendéncia, geral, a
subestimar vazbdes de cheia. A caracteristica autorregressiva de cada bacia é
fundamental para melhores resultados, qualidade atribuida a capacidade de
armazenamento de agua. Uma explicagdo plausivel para as principais fontes de
incerteza é devida a variabilidade espacial da precipitacdo entre as estagdes de
monitoramento e as precipitagdes ocorridas na bacia, anomalias meteorologicas e
aspectos de discretizagcdo. A anadlise de sensibilidade dos modelos frente a
diferentes intervalos de treinamento mostrou que a implementacao de 2 anos, para o
treinamento supervisionado das RNN-NARX, sdo suficientes para se obterem
simulagbes eficientes em quatro das cinco pequenas bacias hidrograficas da

Amazobnia analisadas.

Palavras-chave: Aprendizado de maquina, modelo chuva-vazdo, modelagem

hidrolégica, pequenas bacias hidrograficas da Amazénia.



ABSTRACT
Rainfall-runoff models can help the management of water resources, especially in the
Amazon, a region marked by the low density of hydrological monitoring, and thus
benefit the multiple uses of water and the adequate use of water resources. This
work seeks to simulate daily streamflows of five small catchments in the Amazon,
through the Autoregressive Recurrent Nonlinear Neural Network with Exogenous
Variable (RNN-NARX). Daily rainfall and streamflow data were used for simulation.
The cross-correlation and partial auto-correlation functions helped to determine
lagged data, relevant inputs, with a significance level of 5%. In addition, the
Levenberg-Marquardt error backpropagation algorithm was used for supervised
training of RNN-NARX. Five statistical indices and Garson's relative contribution of
each input variable were also used to evaluate the simulations. Thus, the simulated
flows were classified between unsatisfactory and very good, in addition to showing a
general tendency to underestimate floods. The autoregressive characteristic of each
catchment is fundamental for better results, quality attributed to the water storage
capacity. A plausible explanation for the main sources of uncertainty is due to the
spatial variability of precipitation between monitoring stations and the precipitations
occurring in the catchment, meteorological anomalies and discretization aspects. The
sensitivity analysis of the models against different training intervals showed that the
implementation of 2 years, for the supervised training of the RNN-NARX; is sufficient

to obtain efficient simulations in four of the five small Amazon catchment analyzed.

Keywords: Machine learning, rainfall-runoff model, hydrological modeling, small

Amazon catchments.
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1 INTRODUGAO

A auséncia parcial ou total de séries temporais de dados hidrolégicos pode
comprometer o adequado gerenciamento e aproveitamento dos recursos hidricos,
principalmente em uma época marcada pelo aumento do uso dos recursos naturais
e da degradagao ambiental. Por isso, a concepgao de novas ferramentas de
simulacdo de variaveis hidrolégicas, cada vez mais exatas, é de fundamental
importancia para auxiliar o monitoramento, e promover o desenvolvimento
sustentavel (BEHRANGI et al., 2011).

Ao longo da histéria, houve varias metodologias para simulagao de vazoes,
como o método racional (MULVANEY, 1851), o hidrograma unitario (SHERMAN,
1932), além do desenvolvimento de modelos conceituais (LINSLEY e CRAWFORD,
1960), distribuidos (HUGGINS e MONKE, 1968), fisicos (BEVEN et al., 1980) e
modelos baseados em inteligéncia artificial (DANIELL, 1991), sendo favorecidos a
partir do desenvolvimento computacional ocorrido na década de 50 (PEEL e
MCMAHON, 2020). Segundo Peel e McMahon (2020), entre os anos de 1960 e 2010
houve a intensificacdo da busca por otimizagcdes dos modelos de simulacdo, que
apresentassem resultados satisfatérios e demandassem poucos parametros
implementados. No entanto, ainda € controversa a abordagem ideal, frente a
heterogeneidade das bacias hidrograficas, das caracteristicas meteorologicas em
diferentes locais, em contraste com a disponibilidade de dados (BEVEN et al., 1988;
COULTHARD et al., 2005; BEVEN, 2012).

A simulacdo de vazdes € complexa devido a alta variabilidade espacial e
temporal em que diversos fatores podem desenvolver-se ao longo de uma bacia
hidrografica, conforme a concepg¢éo do balango hidrico (BEVEN et al., 1988; BEVEN,
2012). As variabilidades climaticas, hidraulica dos solos e de seus respectivos usos,
e das caracteristicas fisiograficas das bacias sdo exemplos de variaveis que
causam, muitas vezes, um comportamento nao linear nas vazdes afluentes de um
reservatorio, ou bacia hidrografica (RIBEIRO NETO et al., 2008; QUINTAS et al.,
2011; BLANCO et al., 2013; MIRUS E LOAGUE, 2013).

O modelo de Redes Neurais Recorrentes (RNN) denominado de
Autorregressivo Nao Linear com Entradas Exdgenas (NARX) tem mostrado grande
potencial de modelar sistemas entrada-saida com caracteristicas n&o lineares
(MENEZES JR. e BARRETO, 2008). Desse modo, tal técnica vem sendo aplicada na
simulacao e previsao de variaveis hidrolégicas (MAIER et al. 2010; SHEN e CHANG,
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2013; LEE e RESDI, 2016; WUNSCH et al.,, 2018; GUZMAN et al., 2019;
BANIHABIB et al., 2019; SIT et al., 2020; WUNSCH et al., 2021; MENDONCA et al.,
2021; WANG e CHEN, 2022), com bons resultados de simulagdo em regides com
baixa disponibilidade de dados (GUZMAN et al., 2019). Além disso, RNN-NARX
convergem mais rapidamente e generalizam melhor do que outras técnicas de RNAs
(LIN et al., 1998; IZADY et al., 2013).

A Amazébnia apresenta um dos mais complexos ecossistemas, e a maior
bacia hidrografica do mundo (PAIVA et al., 2012). Porém, o monitoramento
hidrometeorolégico neste local apresenta distribuicdo espacial precaria e baixa
resolucao temporal de dados observados, prejudicando a simulagdo de fenébmenos
chuva-vazdo (COLLISCHONN et al. 2008; BLANCO et al. 2013). No contexto das
pequenas bacias, este cenario € agravado, pois, o interesse econdmico € menor
(BLANCO et al. 2013), entretanto, isto ndo destitui a necessidade de promover o
gerenciamento das mesmas. Assim, as simulagdes de vazdes em pequenas bacias
via RNN-NARX tem como propdésito auxiliar o planejamento de atividades vinculadas
ao uso da agua e analise de impactos ambientais de obras hidraulicas,
disponibilidade hidrica, etc.

Embasado nisto, este trabalho busca simular, primeiramente, hidrogramas, e
consequentemente, curvas de permanéncia de vazdes diarias de pequenas bacias
hidrograficas da Amazonia através de modelos fundamentados em RNN-NARX. Foi
realizado também a analise de sensibilidade quanto a dimensdo das séries
temporais utilizadas para treinamento dessas estruturas, buscando o melhor

desempenho para o objetivo do estudo.

1.1 OBJETIVOS
1.1.1 Geral

Simular hidrogramas e curvas de permanéncia de vazdes diarias médias em
pequenas bacias hidrograficas amazoénicas através do treinamento supervisionado
de Redes Neurais Recorrentes (RNN), com a arquitetura Autorregressiva Nao Linear

com Entradas Exdégenas (NARX).



1.1.2 Especificos
— Obter dados de vazoes e chuvas diarias em bancos de dados nacionais;

— Realizar uma analise exploratdria baseada em correlacdes lineares entre os

dados obtidos e determinar vetores de entrada significantes;

— Treinar e testar modelos de simulagdo chuva-vazdo, avaliando o
desempenho estatistico entre as vazdes observadas e simuladas;

— Verificar a sensibilidade do modelo frente a diferentes intervalos de tempo

de dados de entrada.



2 FUNDAMENTAGAO TEORICA
2.1 CICLO HIDROLOGICO

A importancia da agua é indiscutivel. O equilibrio ecologico de ecossistemas,
além do fundamental papel no desenvolvimento socioecondmico dos seres
humanos, esta ligado a disponibilidade de agua, quer seja em quantidade, quer seja
em qualidade. Porém, a agua é considerada um bem nao renovavel, devido a
desigual distribuicdo de agua potavel no globo terrestre, e as complexas interagdes
hidroclimaticas do ciclo hidrolégico (VON SPERLING, 2006). Logo, o conhecimento
e 0 monitoramento dos recursos hidricos sdo importantissimos para a manutengao
do bem-estar social.

Os fluxos de agua na porcao continental do ciclo hidrolégico apresentam-se
como um sistema dindmico. Conceitualmente, ao adotar a bacia hidrografica como a
area de drenagem de um rio e seus afluentes, é possivel analisar os fluxos de
entrada e saida de agua, que atua simultaneamente. Os principais componentes
deste sistema dinamico sao a precipitagao, a evapotranspiragcao, a interceptacao, a
infiltrac&o, e as vazdes efluentes e afluentes (Figura 1) (WOOLHISER, 1973; TUCCI,
CLARKE, 1997). Destaca-se, também, que estas variaveis sdo submetidas a
variabilidade espacial e temporal, o que torna a estes fendmenos nao lineares, e
altamente complexos (BLANCO et al., 2013).
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Figura 1: Concepgéo dos fluxos de agua no ciclo hidrolégico
Fonte: Adaptado de USEPA (1998)



Quando a intensidade da precipitacdo excede a taxa de infiltracdo, o
escoamento comeca imediatamente. Esse escoamento depende da capacidade de
infiltracdo, da declividade e da porosidade do solo, que também apresenta
resisténcia ao fluxo de agua para as camadas mais profundas. Neste sentido, solos
com altos teores de argila tém menor capacidade de infiltragcdo e indiretamente
produzem mais escoamento superficial, em comparagdo com 0s solos arenosos.
Além disso, agdes antropicas como a alteragcdo do uso e cobertura do solo podem
favorecer o escoamento superficial (CHANDWANI et al., 2015).

As bacias hidrograficas de primeira ordem, que sao normalmente de pequena
escala, ocupam aproximadamente 80% da area de drenagem de um rio (SANTANA
e BLANCO, 2020), por isso, & conveniente considera-las como maior fonte de
geragao de vazdes afluentes (ROGERS, 1972). Em pequenas escalas espaciais e
temporais, os fendmenos hidrolégicos apresentam um comportamento mais
heterogéneo. Enquanto que, em escalas espaciais e temporais maiores, a
complexidade do processo geralmente se reduz através da média de complexidades
de menor escala (WOOD et al. 1988; BLOSCHL et al., 1995; GRAYSON, et al.,
1992; SAVENIJE, 2001). Por exemplo, o balango hidrolégico de pequenas bacias
pode ser considerado menos complexo, visto que o monitoramento de resposta aos
eventos de precipitacdo é mais rapido e mais evidente (BUTTLE, 1998). Por outro
lado, Hewlett e Hibbert (1967) ressaltam a relevancia de processos subsuperficiais e
subterraneos, comparado aos processos superficiais, na producdo das vazdes
afluentes de pequenos rios perenes de areas umidas. Enquanto que Estrany et al.
(2010) comentam que pequenas bacias do mediterraneo tem como principal variavel
influenciadora das vazdes afluentes a evapotranspiragéo. Logo, fica evidente que a
intensidade de diferentes componentes das bacias varia de local para local,

principalmente em pequenas escalas.

2.2 MODELOS CHUVA-VAZAO

Um modelo chuva-vazdo € uma representacao virtual do sistema dinamico
que divide a precipitacdo de chuva em escoamento superficial, subsuperficial,
evapotranspiragdo, umidade do solo ou escoamento subterrdneo (PEEL e
MCMAHON, 2020). Esta abordagem é fundamental devido as limitagbes de técnicas
de medig¢des, ocasionadas pela complexidade da natureza. Com a aplicagdo de

modelos chuva-vazao, espera-se melhorar a tomada de decisbes sobre um
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problema hidroldgico, seja no planejamento de recursos hidricos, cobertura de falhas
histéricas, protegcdo contra eventos extremos, mitigagdo de poluicdo hidrica,
licenciamento de captagdes, ou outras aplicagdes (BEVEN, 2012).

Ao longo da historia, houve cerca de 280 modelos chuva-vazdo, além de
pequenas modificagdes dos modelos oriundos destes modelos (PEEL e MCMAHON,
2020). Segundo Peel e McMahon (2020), a primeira descri¢ao formal de um modelo
chuva-vazao veio através do método racional de Mulvaney (1851), que calcula a
vazdo maxima de pequenas bacias hidrograficas a partir de uma intensidade
maxima de precipitacdo e de um tempo de concentragdao. Outro modelo matematico
relevante, que inspirou diversas outras modificagdes, € o hidrograma unitario de
Sherman (1932), que utiliza a precipitagdo efetiva unitaria, com intensidade
constante no tempo e uniformemente distribuida no espaco e sobre a bacia
hidrografica.

Ha uma evidente busca por um modelo que represente de maneira
satisfatoria os fendbmenos chuva-vazao, mas que também o faga a partir do menor
numero de parametros. Segundo Clarck et al. (2011), a superabundancia de
modelos chuva-vazao mostra que ha uma compreensao cientifica insuficiente da
dindmica ambiental do ciclo hidroldgico, que pode ser atribuida as dificuldades em
medir e representar a heterogeneidade encontrada nos sistemas naturais. Sitterson
et al. (2018) falam que é preciso identificar as prioridades da modelagem e as
limitagdes da disponibilidade de dados, tempo e orgamento para modelos ajudarem
a restringir as escolhas e garantir que o modelo seja o melhor para o propésito
pretendido. Os autores classificam os modelos chuva-vazdo quanto aos tipos de
dados abordados, sejam eles deterministicos ou estocasticos; quanto a estrutura do
modelo, que pode ser empirico, conceitual ou fisico; quanto a variabilidade espacial,
podendo ser modelos agrupados, semi-distribuidos e distribuidos.

A estrutura do modelo define como a vazédo afluente é calculada
(SITTERSON et al., 2018). Para Melsen et al. (2016), a principal caracteristica
limitante de modelos chuva-vazdo esta na escolha da estrutura do modelo. As
estruturas desses modelos mais simples sao os empiricos, que mapeiam a relagao
entrada-saida, ou seja, fazem uma modelagem caixa-preta ao n&o utiliza qualquer
relacéo fisica. Modelos conceituais utilizam equagdes simplificadas que representam
0 armazenamento de agua na bacia hidrografica, analisando parcialmente os fluxos

de agua através de compartimentos, logo, realizam uma modelagem caixa-cinza. E,
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modelos fisicos sdo aqueles que utilizam as leis e equagdes fisicas baseadas em
respostas hidrolégicas reais, ou modelos caixa-branca. Logo, os modelos
conceituais e fisicos necessitam de uma compreensao completa da fisica dos fluxos
de agua envolvidos. Cada estrutura apresenta vantagens e desvantagens, a
depender da finalidade do modelo e do nivel de detalhamento que se deseja
alcangar (BEVEN, 2012, SITTERSON et al., 2018, PEEL e MCMAHON, 2020).
Quando o modelo ndo utiliza alguma forma de representar a variabilidade
espacial € chamado de agrupado, ou seja, considera a manifestagao de fenémenos
hidrolégicos como uma unidade homogénea. Os semi-distribuidos refletem alguma
variabilidade espacial. E, os modelos totalmente distribuidos processam
variabilidade espacial por células de grade (SITTERSON et al., 2018). Estas
diferentes formas de representar a variabilidade espacial das variaveis hidrologicas
sdo mostradas na Figura 2. Os modelos semi-distribuidos levam em consideragao a
variabilidade espacial em escalas menores do que os modelos agrupados, mas nao

calculam o escoamento em cada célula da grade.

Figura 2: Abordagem espacial agrupada (a), semi-distribuida (b) e distribuida (c) de modelos
hidrolégicos
Fonte: Sitterson et al. (2018)

Por ser uma representacao simplificada de um sistema dindmico e complexo,
todos os modelos chuva-vazdo sao incertos até certo ponto. A incerteza dos
modelos pode vir dos dados observados, incertezas naturais, estimativa de
parametros, calibracdo ou suposicoes do modelo, e nas mudangas de variaveis
hidrometeorolégicas (SITTERSON et al., 2018). Segundo Pechlivanidis et al. (2011),
os dados de entrada sdao uma importante fonte de incerteza, pois a calibragdo dos
parametros de qualquer modelo sera baseado na qualidade do monitoramento.

Neste sentido, o aspecto mais desafiador da validacdo de modelos com dados
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observados esta contido em saber até onde os modelos sdo confiaveis e o quao
bem podem representar o sistema abordado. Além disso, a comparacdo entre
diferentes modelos chuva-vazao pode ser contraditoria e de dificil interpretacao, pois
podem diferenciar-se em muitos aspectos estruturais. Alguns modelos podem ser
considerados satisfatérios em determinadas bacias, enquanto outros podem nao
compreender razoavelmente os fendbmenos intrinsecos de outras bacias (FEKETE,
2002; ANDREASSIAN et al., 2004).

Diversos autores relatam a dificuldade em realizar simulagdes na Amazdnia
devido a falta de dados (BLANCO et al., 2007; COLLISCHONN et al., 2008;
BLANCO et al.,, 2013; ISHIRARA et al., 2013). Segundo Blanco et al. (2007), a
abordagem ideal frente as pequenas bacias s&o por dados horarios, devido ao curto
tempo de concentragdo. No entanto, os unicos dados disponiveis nesta escala
espacial sao as precipitagdes e vazdes diarias. Apesar de serem modelos empiricos,
modelos chuva-vazdo sdo baseados em aprendizado de maquina (DEVIA et al.,
2015) e trazem um conjunto de beneficios para a hidrologia, pois sdo adaptaveis a
heterogeneidade de cada bacia, demandam poucos dados e s&o tolerantes a
possiveis falhas. Logo, a fundamentacdo deste trabalho surge na tentativa de
estimar hidrogramas e curvas de permanéncia de vazbes diarias de pequenas

bacias hidrograficas através desta abordagem.

2.2.1 Analise de sensibilidade

Na modelagem hidrolégica, a analise de sensibilidade é definida como a
investigacdo da variagdo do desempenho dos modelos, conforme a mudanga nas
variaveis de entrada ou nos parametros dos mesmos. Isto permite a determinagao
de diferentes fontes de incerteza para a variagdo da saida, utilizando abordagens
qualitativas ou quantitativas sob um determinado conjunto de suposi¢des e objetivos
(SONG et al., 2015).

Os métodos de analise de sensibilidade sdo divididos, majoritariamente, em
globais e locais. Segundo Song et al. (2014), os métodos globais tém certas
vantagens em relagdo aos locais, pois tém a capacidade de incorporar a influéncia
dos parametros de entrada sobre toda a gama de variagdo, e sdo bem adequados
para modelos nao lineares e ndo monotdnicos. Dentre os principais métodos
utilizados na modelagem hidrologica, € possivel citar o método de triagem, analise

de regressao, método baseado na variancia e método de meta-modelagem (SONG
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et al., 2014). O método de triagem é o mais comum, em que, basicamente, os
parametros de entrada sao variados individualmente, enquanto que os demais
parametros sao mantidos constantes.

Alguns dos parédmetros do modelo geralmente representam processos que so
importam durante periodos de tempo especificos, ou seja, modos especificos do
sistema, como constantes de recessao ou parametros que controlam a extensao das
areas saturadas durante um evento de inundagdo. Esses parametros,
provavelmente, s6 serdo identificaveis se esses periodos puderem ser isolados ou
se tiverem impactos suficientes em uma funcdo objetivo global. Em geral, os
métodos de analise de sensibilidade usados para analise variante no tempo incluem
abordagens locais e globais. Independentemente do método aplicado, eles
geralmente sdo usados para estimar a sensibilidade em cada passo de tempo ou

para uma janela de execugao (MASSMAN et al., 2014).

2.3 REDES NEURAIS ARTIFICIAIS

As Redes Neurais Artificiais (RNAs) fazem parte do conjunto de técnicas de
aprendizado de maquina, uma subcategoria da Inteligéncia Artificial. E,
essencialmente, uma forma de estatistica aplicada, com énfase no uso de
computadores para estimar fungdes nao lineares. Deste modo, torna-se capaz de
resolver problemas complexos de classificagao ou regressdo (HAYKIN, 2001).

Inspiradas no sistema nervoso central dos seres humanos, as RNAs foram
idealizadas através da observagdo do funcionamento dos neurdnios bioldgicos
(Figura 3) (HAYKIN, 2001). Nestas células do cérebro humano, os impulsos
nervosos sao provenientes das arvores dendriticas € um unico neurénio humano
pode receber milhares destes sinais de entrada, podendo ser inibitérios ou
excitatérios. A propagacdo dos impulsos nervosos através do axonio' ocorrera
somente quando esta membrana sofrer uma hiperpolarizacdo, através da
distribuicdo assimétrica de ions de sodio e potassio, conhecido como limiar de
disparo. Alcangado este cenario, a propagacédo dos impulsos nervosos € efetivada,

levando informacdes a outros neurénios (KOVACS, 2002).

" Ax6nio é um prolongamento da célula nervosa, que tem como fungdo propagar um pulso
elétrico a outras células.
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Figura 3: Neurdnio biolégico humano
Fonte: Adaptado de Clark te al. (2018)

Semelhante ao sistema nervoso humano, a principal unidade de
processamento em RNAs sdo os neurbnios artificiais (Figura 4 e Equagao 1).
Nessas estruturas, os dados de entrada x» sé&o direcionados ao neurdnio artificial,
para gerar uma resposta yn. Cada xn € ponderado por um peso sinaptico wkn, €
posteriormente todos s&o somados juntamente com o parametro bias bk, que se
torna variavel independente de uma funcgéo de ativagao f(.) para gerar sua saida yn
(HAYKIN, 2001).

fo

Figura 4: Neurdnio artificial sob a forma de diagrama de blocos

Vi = f(bk + Zwkixi> (1)

O inicio das pesquisas cientificas acerca da técnica de RNAs é
frequentemente datado a partir do trabalho de McCulloch e Pitts (1943), que
descreveram neurdnios artificiais binarios, para determinar o estado de ativacédo do

neurdnio. Através de provas formais, os autores mostraram que tais neurbnios
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poderiam implementar qualquer fungao légica ou aritmética (HAYKIN, 2001; YADAV
et al., 2015).

Hebb (1949) formulou a primeira regra formal de aprendizagem associativa de
neurdnios bioldgicos, que resultaria em uma modificagdo permanente do padrao de
atividade de um grupo destas células nervosas espacialmente distribuidas. Assim,
esta lei de aprendizagem foi utilizada para construir uma explicagado qualitativa de
alguns resultados experimentais da psicologia. Este foi o fundamento necessario
para o desenvolvimento de regras de aprendizagens especificas das RNAs (YADAV
et al., 2015).

O primeiro modelo computacionalmente pratico foi proposto por Rosenblatt
(1958), o Perceptron. E considerada a forma mais simples de configuragido de uma
RNAs, pois este tipo de rede é composto por apenas um neurdnio artificial, sendo
utilizada principalmente para classificagao binaria (YADAV et al., 2015).

Widrow e Hoff (1960) desenvolveram o modelo Adaline, que foi equipado com
o aprendizado via Regra Delta, baseada no gradiente descendente da funcédo do
erro. Os autores aplicaram com sucesso a um grande numero de problemas. No
entanto, Minsky e Papert (1969) provaram que as redes que empregam fungdes de
ativagao linear (como o Perceptron e o Adaline da época) séo incapazes de resolver
problemas de classificagdo nao linear (YADAV et al., 2015).

Com o desenvolvimento da Regra Delta Generalizada, hoje muito conhecida
como Retropropagacdo, ou Backpropagation (RUMELHART et al., 1986), a
aplicagao de RNAs se consolidou, pois, esta técnica possibilitou a aproximagao de
fungcbes nao-lineares de arquiteturas feedforward (arquiteturas em que as
informagdes se movem em uma unica diregao) (YADAV et al., 2015).

A classica arquitetura RNA feedforward, chamada de Perceptron de Multiplas
Camadas, é composta por muitos Perceptrons simples, que apresenta uma ou mais
camadas ocultas entre as camadas de entrada e saida (Figura 5). Uma das tarefas
iniciais para usar tais € determinar qual topologia se empregar, ou seja, definir o
numero de camadas ocultas, e de neurbnios em tais camadas. Na maioria das
vezes, estes sao definidos heuristicamente ou pelo método das aproximacdes
sucessivas, o0 que pode resultar em estruturas hiperparametrizadas e nao-
parcimoniosas (ZHANG e MORRIS; 1998; STATHAKIS, 2009). No entanto, segundo

Hornik et al. (1989), RNAs com uma simples camada escondida, provida de fungao
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de ativagao sigmaide logistica, podem aproximar qualquer fungao continua arbitraria,

dando o nimero suficiente de neurénios.

Vetores de Camada Camada Vetores de
entfrada oculta de saida saida

Figura 5: Arquitetura Multilayer Perceptron

2.3.1 Fungdes de ativagao

As fungdes de ativacdo, também chamadas de funcdes transferéncia, séo
responsaveis por modular a resposta yk do neurdnio artificial, em fungdo do produto
entre as entradas e os parametros treinaveis das RNAs. Nessas circunstancias, a
escolha das fungdes de ativacdo dos neurdnios artificiais dependera,
essencialmente, do sistema abordado e a finalidade que se quer atribuir a cada
neurénio. As principais fungdes de ativagdo sdo a degrau, linear, sigméide e
tangente hiperbdlica (Figura 6) (YAZID et al., 2018).

A funcdo de transferéncia degrau (hard-limiter) forga um neurénio artificial a
emitir um valor 3 se a variavel independente atingir um limite 8, caso contrario,
emite-se o valor & (Equacéao 2) (Figura 6a). Isto permite que um neurénio tome uma

decisao ou classificagdo, em vista da caracteristica binaria (BEALE et al., 2016).
Bsex= 0 @)

Hardlim(x) = {/.°°* =/

A funcéo de ativagao linear (purelin) faz com que o neurdnio artificial aplique

uma transformacado linear, conforme a Equacdo 3 (Figura 6b). Esta fungao
geralmente esta associada a camada de saida das RNAs, pois podem assumir

qualquer valor, tanto positivos quanto negativos (BEALE et al., 2016).
Purelin(x) = ax (3)

17



A funcado de ativacao log-sigmdéide (logsig) € utilizada para propagacédo de
valores positivos, porque a resposta varia entre os valores de 0 a 1, conforme a
Equagao 4 (GHOSE et. al, 2018) (Figura 6c).

Logsig(x) = pe (4)

A funcdo de ativagao tangente hiperbdlica (tanh) é utilizada para propagagao
de valores tanto positivos como negativos, pois a resposta varia entre os valores de -
1 a 1, conforme a Equagédo 5 (GHOSE et. al, 2018) (Figura 6d). As fungdes de
ativacdo log-sigmoide e tangente hiperbdlica sdo fundamentais na aproximagéo

numeérica de fungdes nao lineares, pois sao diferenciaveis (HAYKIN, 2001).
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Figura 6: Funcdes de ativacao degrau (a), linear (b), log-sigmoide (c) e tangente hiperbdlica (d)

2.3.2 Algoritmos de treinamento

O processo de treinamento de RNAs consiste em ajustar os pesos sinapticos
das RNAs, de tal modo que as entradas xn convirjam para o valor mais préximo a
saida desejada yn, ou seja, com o menor erro possivel. De modo geral, estes
algoritmos podem ser classificados em treinamentos n&o supervisionados,
aprendizado por refor¢o e supervisionados (HAYKIN, 2001, YADAV et al., 2015).

Um dos grandes avancgos no desenvolvimento de RNAs ocorreu na década de

1980, com a proposicdo do algoritmo de retropropagagcdo (do inglés
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backpropagation), ou Regra Delta Generalizada, apresentado por Rumelhart et al.
(1986). E uma técnica de treinamento supervisionada, que consiste em utilizar a
regra da cadeia para calcular a derivada da fungao de erro em relagdo a cada peso
sinaptico, assim, estes seréo ajustados pelo gradiente descendente do erro (LIPTON
et al., 2015). O ajuste dos pesos ocorre em duas etapas: a primeira, chamada de
propagacao, o vetor de entrada é aplicado nas camadas ocultas e de saida até gerar
uma resposta, sendo que todos os pesos sao fixos; na segunda, a retropropagacao,
0s pesos sdo todos ajustados com a regra de aprendizado, que € baseada no erro
(HAYKIN, 2001). A partir disso, um grande volume de trabalho em técnicas
heuristicas de pré-treinamento e otimizagdo levou a um sucesso empirico
impressionante em muitas tarefas de aprendizado supervisionado (WYTHOFF,
1993).

O algoritmo de retropropagagcédo Levenberg-Marquardt é o método
supervisionado mais rapido para treinar RNAs até varias centenas de pesos
sinapticos (BEALE et al, 2016). Neste algoritmo, que opera em fungdo do erro
quadratico médio, os pesos sao modificados através da matriz Hessiana
aproximada, oriunda da matriz Jacobiana transposta, conforme expresso na
Equagéo 6 (WILAMOWSKI et al., 1999; SAHOO e JHA, 2013).

Wierny = W — (7] + uD™JTET (6)

Em que JT é a matriz Hessiana aproximada, Er é o erro quadratico, J é a
matriz Jacobiana, wk € wk+1) S840 0S pesos sinapticos, y € um parédmetro de ajuste de

taxa de convergéncia, e | € a matriz identidade.

2.3.3 Parada antecipada e validagao cruzada

Quando se treina as RNAs, geralmente se esta interessado em obter
desempenho de generalizagdo muito bom, ou seja, que o erro em exemplos nao
utilizados durante o treinamento seja baixo. No entanto, em algum momento do
treinamento, o erro deste conjunto pode estar diminuindo enquanto que o erro em
conjuntos de dados diferentes, nao utilizados no treinamento, comega a aumentar.
Isto € conhecido como overtraining (PRECHELT, 1998).

Segundo Prechelt (1998), as formas de se evitar overtraining sao as técnicas
regularizacdo e parada antecipada (do inglés early stopping). Conforme Finnoff et al.
(1993), esta ultima é amplamente utilizada porque é simples de compreender, facil
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de implementar e tem sido relatada como superior aos métodos de regularizacdo em
muitos casos. A parada antecipada por validagao cruzada consiste na avaliagao
iterativa de um subconjunto de dados, que é independente do utilizado para
treinamento da RNA, de modo que quando alcangado algum critério especifico, tal

como o menor erro pré-definido, seja finalizado o treinamento.

2.3.4 Redes Neurais Recorrentes

Redes Neurais Recorrentes (RNN) sdo RNAs que recuam informagdes de
neurénios de camadas posteriores para camadas anteriores (feedback), de tal forma
que pode haver conexdes arbitrarias entre quaisquer neurénios (HAYKIN, 2001; SIT
et al., 2020). Segundo Diaconescu (2008) isto da a capacidade de reter informagdes
de estados anteriores, uteis para transferir informacdes para simulagdes posteriores.
Isto se torna util quando os sistemas abordados apresentam dependéncia temporal
e espacial, tais como trocadores de calor, sistemas de deforma catalitica, séries
temporais etc. (LIN et al., 1998).

A arquitetura Autorregressiva Nao Linear com Entradas Exogenas (NARX) é
uma rede dindmica recorrente, com conexdes de realimentacdo do valor resultante
do neurbnio de saida diretamente para a camada de entrada. Assim como
encontrado em outras RNAs, as RNN-NARX também sao divididas em camadas de
entrada, oculta e de saida (WANG e CHEN, 2022). Nesta perspectiva, o
processamento de dados nas camadas ocultas e de saida é igual as redes
feedforward (CHEN et al. 1990). O modelo NARX é baseado no modelo linear
autorregressivo, que é comumente utilizado na modelagem de séries temporais
(IZADY et al., 2013). Além disso, conforme Lin et al. (1998), as RNN-NARX
convergem mais rapidamente, e tem melhor habilidade de generalizagdo que outras
arquiteturas recorrentes.

RNN-NARX é uma importante ferramenta para simulagdo de sistemas nao
lineares discretizados no tempo, que pode ser descrito conforme a Equacao 7
(MENEZES JR. e BARRETO, 2008). E realizada a aproximac&o da fungéo n&o linear
desconhecida f, onde o valor atual y) é definido por seus proprios valores passados
y(t-n), por valores atuais X € passado Xn) de entradas exdgenas, e por ¢, que é o

erro associado a cada simulagao.

Yy = f(}’(t—1)')’(t—z)' e Yt-n) X() X(¢-1)» ---;x(t—n)) + &y (7)
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Duas configuragdes RNN-NARX sao importantes e uteis na modelagem. Na
forma paralela (closed loop) (Figura 7), é possivel considerar o valor estimado de
saida do modelo (output), realimentando diretamente na camada de entrada. Na
forma série-paralela (open loop) (Figura 8), sdo utilizados os valores observados

(target), sendo implementados manualmente na camada de entrada de uma

feedforward padrao (MENEZES JR. e BARRETO, 2008; BEALE et al., 2016).
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Figura 8: Arquitetura NARX série-paralelo

Quando se esta interessado em um horizonte de simulagédo mais longo, tais
como a simulagdo de multiplos passos (em inglés multi-step-ahead) ou de longo
prazo (em inglés long-term), deve-se optar pela conversdo da estrutura série-
paralelo em paralelo (SORJAMAA et al., 2007, CHANG et al., 2016). Neste caso, os
componentes da camada de entrada, anteriormente composto de pontos de amostra
reais da série observada, sdo gradualmente substituidos por anteriores valores
estimados pelo proprio regressor, tornando-se um sistema autbnomo. A simulagéo
com varias etapas posteriores e a modelagem dindmica sdo problemas muito mais
complexos do que se lidar com simulagdes de uma etapa de antecedéncia. Desta
maneira, acredita-se que estas sao tarefas nas quais as RNN-NARX s&o relevantes
(MENEZES JR. e BARRETO, 2008).

As RNN-NARX sdo aplicadas em varias areas do conhecimento. Na

hidrologia, sao evidenciados estudos para simulagdo e previsdbes de vazdes
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afluentes, de niveis de aguas subterraneas, de parametros de qualidade da agua,
etc (MOSAVI et al., 2018).

Lee e Resdi (2016) analisaram a capacidade das RNN-NARX para previsao
simultanea horaria em multiplas estacbes de medicdo em uma bacia hidrografica do
distrito de Kemaman em Terengganu, na Malasia. A bacia tem 2.535 km?, e é
propensa a inundacdes, que causam sérios problemas socioambientais com relativa
frequéncia. Os dados utilizados foram medigdes de quatro estagdes meteorologicas,
contendo precipitagcado, temperatura, umidade relativa do ar média e evaporacgao.
Foram obtidos bons resultados quando comparado com observagdes de campo,
utilizando um conjunto minimo de dados de treinamento de 120 dias.

Debastiani et al. (2016) simularam as vazbes diarias em uma sub-bacia
hidrografica do Rio Canoas, Estado de Santa Catarina, Brasil, elaborando RNN-
NARX. A bacia possui 1.980 km?, esta bem preservada em termos ambientais e é
considerada importante zona de recarga do Aquifero Guarani. Foram utilizadas a
precipitagdo e evapotranspiragcao de quatro estagbes meteoroldgicas, duas inseridas
na bacia e duas proximas. Apds o treinamento em série-paralelo, o modelo foi
convertido para paralelo, a fim de simular um ano de vazdes diarias. Os autores
exaltaram o potencial da arquitetura, alcangando resultados significantes.

Previsdes de niveis diarios das aguas subterrdneas em um pogo agricola
foram realizadas por Guzman et al. (2019), no noroeste do Mississipi, nos Estados
Unidos, com o intuito de ajudar os agricultores e as partes interessadas a gerenciar
e planejar com eficacia o uso eficiente dos recursos de aguas subterraneas. O local
de estudo faz parte de um dos aquiferos com maiores volumes outorgados do pais.
Os autores relataram boas simulagcdes de RNN-NARX, com dados de precipitacdes
diarias. Além disso, dissertaram sobre as vantagens das simulagdes baseadas em
dados, por oferecerem uma alternativa menos dispendiosa e mais eficiente em
escala regional, em comparagdao com os modelos conceituais.

Wunsch et al. (2018) realizaram a previsdo de niveis de aguas subterraneas
de seis meses em seis po¢os no sudoeste da Alemanha, nos estados de Hessen,
Baden-Wurttemberg e Baviera. No trabalho, foram utilizadas as precipita¢des diarias
e a temperatura diaria média de estacdes proximas. Os autores mostraram que as
RNN-NARX sao notavelmente adequadas para realizar previsbes de aguas
subterraneas para pogos de observacado nao influenciados em todos os tipos de

aquiferos, mesmo que o numero de parametros de entrada seja limitado. Nesse
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caso, foram comparadas as previsdes de niveis de lencol freatico provenientes de
diferentes algoritmos de aprendizado de maquina, incluindo RNN-NARX, em 17
pocos de aguas subterraneas dentro da area do Alto Reno, que é o maior recurso de
aguas subterréneas da Europa Central (WUNSCH et al., 2021). Foi relatado que o
RNN-NARX apresenta um melhor desempenho em comparacdo com os modelos de
Redes Neurais Convolucionais (CNN) e Long-Short Term Memory (LSTM), quando
apenas poucos dados de treinamento estao disponiveis.

Mendonga et al. (2021) aplicaram as RNN-NARX em uma sub-bacia do Rio
Guama, no Estado do Par4, Brasil, que apresenta area de contribuicdo de 5.032
km?. A area de estudo é marcada pela agropecuaria e presengca de comunidades
tradicionais. Foram utilizadas precipita¢des diarias de quatro estacdes pluviométricas
em torno da bacia, para simular hidrogramas de vazdes diarias meédias. Os
resultados mostraram um coeficiente de determinacao de 0,99 e baixos erros de
simulagdo. Os autores destacam, mesmo que conceitualmente, a relagdo entre o
potencial autorregressivo de bacias planas, que naturalmente favorece a infiltragao
de aguas pluviais.

Wang e Chen (2022) utilizaram a RNN-NARX para preencher a lacuna de
dados entre os projetos Gravity Recovery and Climate Experiment e o Gravity
Recovery and Climate Experiment Follow On, sobre a Bacia do Rio Yangtzé, na
China. Devido a problemas de bateria, o primeiro foi substituido pelo segundo, n&o
havendo monitoramento entre o periodo de outubro de 2017 até maio de 2018.
Conforme os autores, este preenchimento de dados é fator primordial para analise
de extremos climaticos, pois sao necessarias séries temporais com alta resolugao
espaco-temporal. Para isso, foram utilizados dados de precipitacdo, temperatura e
anomalias de armazenamento de agua terrestre como entradas exdgenas. Na etapa
de treinamento, foi utilizada a RNN-NARX série-paralelo. A topologia ideal foi
encontrada através de aproximacodes sucessivas, sendo a ideal com nove neurbnios
na camada oculta. Posteriormente, na fase de simulagédo do periodo nao observado,
foi utilizada a estrutura RNN-NARX paralelo. Comparando os valores simulados e
observados apoés a falha historica, os critérios estatisticos obtidos, foram de 1,34 cm
para a raiz do erro quadratico médio (RMSE), e 0,95 de coeficiente de eficiéncia de
Nash-Sutcliffe (NSE). Os autores concluiram que foi obtido sucesso na previsdo de
eventos de inundac&o durante o periodo de lacuna de dados, sugerindo que a RNN-
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NARX é promissora para prever extremos hidrolégicos de curto prazo sobre a area

de estudo.
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3 MATERIAL E METODOS
3.1 AREA DE ESTUDO

Foram selecionadas cinco pequenas bacias hidrograficas da Amazoénia. Esta
selecdo foi baseada no trabalho de Santana e Blanco (2020), que definiram
pequenas bacias hidrograficas na Amazonia sendo aquelas com area de drenagem
inferior a 500 km?2. Para essas bacias, os dados de precipitagcbes e vazdes diarias
foram obtidos no banco de dados da Agencia Nacional de Aguas (ANA), através do
portal HidroWeb, sob o] endereco eletrénico
https://www.snirh.gov.br/hidroweb/serieshistoricas. A Tabela 1 mostra os dados das
estacbes meteorologicas e a resolugdo temporal das séries temporais utilizadas.
Como critério de escolha das resolugdes temporais, buscaram-se intervalos que nao
apresentassem falhas historicas. A Figura 9 mostra a localizagdo das estagdes
utilizadas no estudo.

As simulagdes dos hidrogramas e curvas de permanéncia das bacias foram
construidas a partir da abordagem de RNN-NARX, que sdo modelos empiricos
baseados em séries temporais (DEVIA et al., 2015; GHOSE et al.,, 2018). Estes
modelos foram desenvolvidos a partir da biblioteca Deep Learning Toolbox, com o
software MATLAB, da Mathworks. As bases fundamentais dos algoritmos utilizados
constam no Apéndice A. Supondo que essas pequenas bacias tém precipitagao
homogénea em toda a extensdo da bacia, espera-se que a partir da capacidade de
aprendizado no erro e aproximagado do sistema ndo linear, seja possivel estimar
vazdes diarias médias de uma série temporal de 365 dias, a fim de proporcionar uma

ferramenta de gestao de recursos hidricos em pequenas escalas.

Tabela 1: Estagdes hidrometeoroldgicas utilizadas

Nome da estacao Cédigo Latitude (°) Longitude (°) Tipo Tempo (anos) Sigla
Ourém 147016 -1,5517 -47,1172 Pluviométrica  2009-2014 P1
Abreulandia 949000  -9,6244 -49,1553 Pluviométrica  2009-2014 P2
Arraial 147000 -1,55 -47,1167 Pluviométrica 1966-1971 P3
Colinas do Tocantins 848000 -8,0528 -48,4817 Pluviométrica 1993-1998 P4
KM 947 BR-163 855000  -8,1872 -55,1194 Pluviométrica  2015-2018 P5
Marambaia 31600000 -1,65220 -47,1167 Fluviométrica  2009-2014 Q1
Fazenda Craveiro 27370000 -9,60360 -48,9708 Fluviométrica 2009-2014 Q2
Arraial 32300000 -1,31667 -47,11667  Fluviométrica  1966-1971 Q3
Proximo Colinas do Tocantins 23130000 -8,0692 -48,4517 Fluviométrica 1993-1998 Q4
Base do Cachimbo 17345000  -9,3589 -54,9039 Fluviométrica  2015-2018 Q5

Fonte: Agéncia Nacional de Aguas (2021)
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Figura 9: Localizacao das estagdes hidrometeoroldgicas de estudo

3.2 ANALISE EXPLORATORA

As séries temporais utilizadas foram submetidas a uma analise exploratéria,
baseadas nas fungbes de correlacdo cruzada e autocorrelagdo parcial, para
identificar vetores de precipitacdo e vazdes defasadas significantes. Segundo
Debastiani et al. (2016), estas analises tém a capacidade de identificar processos-
chaves ligados as variaveis de entrada que influenciam diretamente as vazdes no
exultério de uma bacia hidrografica, especialmente quando se desconhece o sistema
a ser modelado (OYEBODE E STRETCH, 2018). Logo, espera-se identificar
potencialidades nas variaveis disponiveis, que serado utilizadas como vetores de
entrada nas RNN-NARX.

A correlacao cruzada é o método utilizado para analisar o comportamento da
correlagdo linear entre duas variaveis em fungcdo das defasagens no tempo das
séries temporais (BAYER et al., 2012). Calcula-se este indice através das

Equacbes 9 e 10.
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1 n
Cov(y,X(t_k)) = E|: Z (y - y)(xt—k - f)l (8)

t=k+1

_ COV(yx 11y
Trt-l)y = To=3) (9)

Em que cov é a covariancia amostral, y e x sdo as variaveis abordadas, k sdo
os valores defasados do instante t, y e X sdo médias amostrais, e n € 0 numero de
observacgoes.

A funcado de autocorrelacdo € uma medida da correlagdo linear entre as
observacdes de uma série temporal que sdo separadas por k unidades de tempo
(BAYER et al., 2012), calculada conforme a Equagédo 11. No entanto, evidencia-se
em muitas séries temporais que os coeficientes de autocorrelagcado de defasagens de
menor intervalo de tempo podem influenciar nos coeficientes de defasagens de
maior intervalo de tempo. Diante disso, surge o coeficiente de autocorrelagao parcial
que tem a capacidade de filtrar tais influéncias, para que possa ser representada a
auténtica dependéncia temporal de cada defasagem (BAYER et al., 2012). Este
indice é calculado conforme a Equacgao 12.

n -1

Z(Yt - ¥)?

t=1

(10)

=] Y G- POk —)

t=k+1

k-1 k-1 -1
b = | Pk — Z(d’k—u - pk—j)] [1 - Z(d’k—ljpk)] (11)
j=1 j=1

Em que, px €& o coeficiente de autocorrelacdo, y ¢é a variavel

autocorrelacionada nos instantes t e t-k, y € a média de vy, ¢, € o coeficiente de
autocorrelagédo parcial e ¢,_,; séo os coeficientes de autocorrelagio parcial filtrados
das defasagens anteriores. Com base nessas correlagdes lineares, foi identificado
diferentes vetores de entrada, com nivel de significancia de 5% (a = 0,05), para

serem implementados na camada de entrada dos modelos RNN-NARX.

3.3 MODELOS PROPOSTOS

A primeira etapa para aplicagdo dos modelos RNN-NARX esta relacionada a
escolha dos conjuntos de dados. A divisdo dos conjuntos de treinamento, validagao
e teste foi definida, conforme a disponibilidade dos dados de precipitacdo diaria e
vazdes diarias meédias em cada bacia, sendo que a unidade utilizada para a diviséo

entre os conjuntos é a cada ano de dados completo, sem qualquer falha histérica.
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A topologia das RNN-NARX utilizadas é descrita a seguir. O numero de
entradas €& definido pela quantidade de precipitacbes e vazbdes defasadas
implementadas. Foi utilizada apenas uma camada oculta, pois é suficiente para
aproximar qualquer fungado nado linear (HORNIK et al.,1989). E, o numero de
neurdnios ocultos foi definido pelo método de tentativa e erro, com busca do numero
de neurbnios entre 2 e 20, sendo aferido erro quadratico médio a cada acréscimo de
neurénio. Cada combinacgéo possivel é treinada varias vezes, e a configuragdo com
0 menor erro € a escolhida para discussao.

Ao utilizar redes de algoritmos de retropropagac¢ao, dependendo da funcéo de
ativacado dos neurbnios, € necessario realizar o pré-tratamento dos dados utilizados
para o treinamento. As fungdes de ativagcdo comumente utilizadas para abordagem
de sistemas n&o lineares sao as fungdes sigmoides, tal como a logistica e a tangente
hiperbdlica (HAYKIN, 2001; MAIER e DANDY, 2000). Conforme Rezaeian Zadeh et
al. (2010) mostraram que a funcdo de ativagdo tangente hiperbdlica teve um
desempenho melhor do que a ativagdo sigmoide logistica na previsdo de vazdes
diarias. O mesmo foi evidenciado por Yonaba et al (2010). Embasado nisso, foi
utilizada a funcédo de ativagao tangente hiperbdlica (tanh) nas camadas ocultas da
RNN-NARX. A partir disso, os dados de precipitacdes e vazdes foram submetidos a
uma fungdo de normalizagdo. Sola e Sevilla (1997) afirmaram que a normalizagao
dos dados de entrada é crucial para obter bons resultados, bem como agilizar
substancialmente os calculos. Guzman et al. (2019) comentou que este pré-
processamento reduz o ruido no processo de calibracdo. Desta forma, os dados
foram reajustados, conforme a Equacédo 12, ao intervalo de -1 a 1. Este intervalo
corresponde a faixa de funcionamento da fungéo de ativagédo tangente hiperbdlica.

. X = Xmin i .
Xn = lmin T (lméx - lmin) (12)
Xmax — Xmin

Em que x é a variavel, que se deseja normalizar, x» € a variavel normalizada,
Xmin € Xmax SA0 0S valores minimos e maximos encontrados nos dados, € imin € imax
sdo, respectivamente, os limites inferior e superior do intervalo, que se deseja
normalizar. Ao fim das simulagdes, as vazdes diarias foram desnormalizadas,
obedecendo a Equacao descrita anteriormente, para comparar os resultados obtidos
com os dados observados.

Para ajuste dos paréametros treinaveis das RNN-NARX, foi utilizado o

algoritmo de retropropagacéo do erro Levenberg-Marquardt (trainlm), com o auxilio
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da funcdo do erro quadratico médio em cada iteragdo. Foi utilizado, também, o
método de parada antecipada por validagao cruzada para evitar overtraining cujos

critérios de finalizagdo do treinamento estdo expostos na Tabela 2.

Tabela 2: Condigbes de parada antecipada por validagao cruzada

Parametro Valor
Méaximo numero de iteragdes 1500
Desempenho desejado (erro quadratico médio maximo) 0,005
N° max. de aumento de desempenho na validagao 300
Tempo maximo de treinamento (segundos) 3000

Apos a fase de ajuste dos parametros, ocorrida no treinamento, as RNN-
NARX foram convertidas para a estrutura paralela, para simulagdo de longo periodo
(long-term), de forma que fosse possivel estimar os proximos 365 dias somente com
as precipitagdes observadas, tal como ocorre em Debastiani et al. (2016), Wunsch et
al. (2018), e Wang e Chen (2021).

Foi efetuada, também, a analise de sensibilidade do modelo frente a
diferentes tamanhos de amostras de precipitacdes diarias e vazdes diarias, de modo
a elucidar o tempo minimo necessario para realizar simulagdes adequadas. As
amostras destinadas ao treinamento das RNN-NARX dependem do tamanho da
série temporal encontrada em cada bacia. No entanto, foi adotada a redugdo das

amostras em 1 ano como critério para fracionamento.

3.4 CRITERIOS DE DESEMPENHO

Para verificar o desempenho estatistico dos modelos propostos, e identificar
os modelos mais adaptados, os hidrogramas e curvas de permanéncia observadas e
simuladas foram submetidos aos seguintes critérios: o coeficiente de eficiéncia de
Nash-Sutcliffe (NSE), a raiz do erro quadratico médio (RMSE), a raiz do erro
quadratico médio padronizado (RSR), o viés percentual (PBIAS), e o erro absoluto
percentual médio (MAPE).

O indice NSE (Equacéo 14) é uma estatistica normalizada, que determina a
intensidade relativa da varidncia residual, comparada a variancia dos dados medidos
(NASH e SUTCLIFFE, 1970). Este € um dos critérios estatisticos mais utilizados
para avaliar a eficacia dos modelos hidrolégicos (ARNOLD et al. 2012). Valores de
NSE iguais a 1 indicam um ajuste perfeito entre os dados observados e simulados, e

valores menores ou iguais a 0 indicam que a média dos dados observados € um
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preditor mais preciso que os simulados pelo modelo (MORIASI et al., 2007;
PRAHARAJ et al., 2018).

_q1_ Z?:l(Q - Qe)z
NSE =1 —Zin=1(Q — Qm)z] (13)

O RMSE (Equagao 15) mostra os erros de simulagdo na mesma unidade da
variavel abordada, no entanto, como € proveniente do erro quadratico, destaca erros
com maiores magnitudes (MORIASI et al., 2007). O valor zero indica que o erro de

simulacao é inexistente ou desprezivel.

Z?(Qe - Q)Z (14)

n

RMSE =

Embora seja comumente aceito que quanto menor o RMSE melhor o
desempenho do modelo, Singh et al. (2005) apresentam uma diretriz para qualificar
0 que é considerado um RMSE baixo com base no desvio padrao das observacgoes.
Diante disso, surge o indice RSR (Equacéo 16) que é a razéo entre o indice RMSE e
o0 desvio padrao das vazdes observadas, ou seja, € uma versao padronizada do
RMSE. Segundo Moriasi et al. (2007) o RSR varia do valor étimo, 0 (zero), até um
grande valor positivo. Além disso, os autores comentam que quanto menor o RSR,
menor o RMSE, e melhor o desempenho da simulagdo do modelo.

V2iE1(Q — Qe)?

RSR = NZi=0 X Xel (15)

VEL @ = Q)2
O indice PBIAS (Equacdo 17) avalia a tendéncia média dos valores
simulados, que podem ser maiores ou mais baixos do que seus equivalentes
observados. Seu valor ideal € 0, indicando simulacdo precisa. Valores positivos
indicam viés de superestimag&o do modelo, enquanto que valores negativos indicam
viés de subestimacdo do modelo (MORIASI et al. 2007).

PBIAS = (%ﬁ) 100 (16)
i=1

O indice MAPE mostra os erros absolutos sob a forma percentual (GYASI-
AGYEI et al.,, 1995), logo, é possivel observar o panorama geral dos erros,
independente se ha subestimacao ou superestimacdo. O valor zero indica que o erro

de simulacdo é inexistente ou desprezivel. E calculado conforme a Equacédo 18 (XU
e LIU, 2013).
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MAPE = 100

Nas equagbes 12-18, Q sdo as vazdes observadas, Qe sdo as vazodes
estimadas, Qm é a média das vazdes observadas e n € o numero amostral.

Além da importancia de calcular os indices estatisticos dos modelos, é
fundamental adotar critérios especificos para classificagdo quanto a qualidade dos
modelos. Neste estudo foi adotada a classificagao proposta por Moriasi et al. (2007),

tal qual classificaram os indices conforme a Tabela 3.

Tabela 3: Classificagdo do desempenho estatistico dos modelos hidrolégicos

indice de desempenho RSR NSE PBIAS
Muito bom 0,00csRSR=<0,50 0,75<NSE<1,00 PBIAS <+ 0,10
Bom 0,50<RSR=<0,60 065<NSE<0,75 +0,10<PBIAS<+0,15
Satisfatorio 0,60<RSR=<0,70 0,50<NSE<0,65 +0,15<PBIAS<+0,25
Insatisfatorio RSR > 0,70 NSE < 0,50 PBIAS = + 0,25

Por fim, foi realizada a analise de pesos sinapticos das RNN através do
coeficiente de contribuicédo relativa de Garson (1991), CR (Equagéo 19). O método
consiste em avaliar tais parametros de cada variavel e atribuir um percentual de
relevdncia a estimativa dos valores de saida (DEBASTIANI et al., 2016;
MENDONCA et al., 2021).

no Wij
A

ni [y "o 9]
21 [21 (Wjo ni W >]
1 t

Em que wij é o peso atribuido ao vetor de entrada i em diregdo ao neurdnio

CR

(18)

oculto j, wjo € 0 peso atribuido a resposta do neurbénio oculto j em direcdo ao
neurénio de saida o, no € 0 numero de neurdnios ocultos e ni € o numero de
variaveis de entrada. O fluxograma mostrado na Figura 10 sumariza a metodologia

da pesquisa.
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4 RESULTADOS E DISCUSSAO
4.1 IGARAPE DA PRATA

A estacéo fluviométrica Marambaia (Q1) (Céd. 31600000) monitora as vazdes
diarias de uma pequena sub-bacia hidrografica do Igarapé da Prata, que tem area
de drenagem de 32,7 km? e esta situada no municipio de Capitdo-Pogo, Estado do
Para (ANA, 2021). A altitude média desta bacia hidrografica € de 79 m, minima de
46 m, e maxima de 104 m (Figura 11). A declividade é classificada como suave
ondulada, pois a média é de 3,45% (USGS, 2021; EMBRAPA, 1999). O tempo de
concentragcdo é estimado em 2,2 horas (CARIELLO, 2014). Além disso, a
comunidade rural de Nova Coldnia esta inserida nesta area, sob a latitude 1°42'02"S
e longitude 47°06'27"W.

As classes de solos inseridas na bacia Q1 s&o o latossolo amarelo distrofico e
o argissolo vermelho-amarelo distréfico (IBGE, 2021). Sartori et al. (2005) comentam
que esta classe pedolégica € marcada por altas profundidades e condutividade
hidraulica. Porém, o uso do solo é predominantemente destinado a pastagem, com
vegetacdo forrageira herbacea de espécies cultivadas (INPE, 2014). Logo, a
dispensa do manejo sustentavel do solo ao longo das atividades desenvolvidas pode
comprometer as caracteristicas fisicas do solo, ou seja, pode ocasionar mudangas
significativas no comportamento hidrolégico da bacia ao longo do tempo.

A 15 km de distancia da estacdo Q1, na direcdo norte, esta localizada a
estacado pluviométrica Ourém (P1) (Céd. 147016). Blanco et al. (2005), confirmaram
que os regimes pluviométricos da estagcdo meteoroldgica P1 e as vazdes de Q1 séo
razoavelmente correlacionados. O clima desta area é definido como Am, conforme a
classificagdo Képpen-Geiger (KOPPEN, 1936; GEIGER, 1954), o que representa um
clima tropical com regime de mongdes, altos indices pluviométricos, e baixa
variabilidade na temperatura, que sempre estda acima dos 18°C. A variabilidade
intra-anual da precipitagao na bacia Q1 é caracterizado por dois periodos distintos
(MORAES et al., 2005). O periodo chuvoso & compreendido entre os meses de
janeiro e julho, e o periodo de estiagem é compreendido entre os meses de agosto a

dezembro, conforme a normal climatoldgica observada na estagao P1 (Figura 12).
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Figura 12: Normal climatoldgica da estagéo P1 entre 1991-2020
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As séries temporais P1 e Q1 selecionadas tém seis anos hidroldgicos
completos, desde 2009 até 2014. A divisdo dos conjuntos de dados ocorreu da
seguinte maneira: fazem parte do conjunto de treinamento os anos hidrologicos
entre 2009 e 2011 (1961 dados), de validagédo os anos hidrologicos de 2012 e 2013
(731 dados) e do conjunto de teste o ano de 2014 (365 dados). E possivel observar

a divisao dos conjuntos na Figura 13, sob a forma de hidrogramas de vazdes.
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Figura 13: Hidrogramas de vazdes da estacao Q1 entre 2009-2014

A Tabela 4 mostra a estatistica descritiva das variaveis por ano hidrologico.
Observa-se que 0s anos com 0 menor e 0 maior indice pluviométrico ocorrem em
2010 e 2011, respectivamente, com total anual de 1.738 mm e 2.716 mm. No
entanto, o menor e o maior indice fluviométrico ocorrem, respectivamente, nos anos
de 2012 (vazao média de 0,58 m3s™! e a vazéo de referéncia Qos de 0,13 m3s™) e
2011 (vazao média de 1,68 m3s™! e a vazao de referéncia Qos de 0,63 m3s!). Uma
das principais causas dessa diferenca pode ser a variabilidade espacial e temporal
de anomalias meteorolégicas, tais como o fendmeno EI Nifio Oscilagdo Sul (ENOS).
Segundo dados do Instituto Nacional de Pesquisas Espaciais (INPE, 2021), os anos
de 2009-2010 foram alvos de El Nifio moderado, fase positiva do fendmeno ENOS,
que tem a capacidade de ocasionar diminui¢cao da precipitacdo em baixas latitudes,
como na bacia de Q1. Em contrapartida, no ano de 2010-2011 houve fenémeno La
Nifia de magnitude, o que pode acarretar aumento dos indices pluviométricos em
regides tropicais (INPE, 2021). Além disso, o ano de 2012 sugere variabilidade
espacial entre a precipitacdo efetivamente ocorrida em Q1 e a observada em P1.

Espinoza et al. (2021) mostraram que os meses de dezembro-2011 a margo-2012
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apresentaram anomalias negativas no comportamento da precipitacédo no nordeste
paraense, com reducdes entre -50 e -100 mm/més. Segundo os mesmos autores,
houve a concentracédo de precipitacdo na parte ocidental amazénica, resultando em
eventos extremos.

Tabela 4: Estatistica descritiva das variaveis P1 e Q1

Variavel Estatistica Treinamento Validacao Teste
hidrologica 2009 2010 2011 2012 2013 2014
P1 Média' (mm/dia) 7,34 4,76 7,44 5,38 6,32 7,19
Anual (mm/ano) 2.678,10 1.738,00 2.715,90 1.969,70 2.306,60 2.623,70

Max (mm/dia) 106,20 58,40 113,30 56,70 81,70 111,20
Min? (mm/dia) 0,20 0,30 0,20 0,30 0,30 0,40

Coef. de variagdo (%) 194,45 179,65 200,02 161,79 182,89 193,94
Q1 Média (m?¥/s) 1,63 1,20 1,68 0,58 1,34 1,62
Max (m3/s) 7,76 3,93 7,03 2,42 7,73 4,69
Min (m?/s) 0,27 0,21 0,35 0,02 0,10 0,54

Coef. de variagdo (%) 59,86 46,34 57,17 76,29 73,78 55,05
Qs0% (mM3/s) 1,56 1,25 1,62 0,44 1,05 1,39
Qos% (M3/s) 0,35 0,35 0,63 0,13 0,23 0,64

'Considerando dias sem chuva
2Acima de zero

A Figura 14 mostra as fung¢des de correlagdo cruzada entre Q1 e P1, em
diferentes resolugdes temporais. Considerando os anos entre 2009-2011, e o nivel
de significancia de 5%, destacam-se as precipitagdes defasadas entre 0-6 dias, 9-11
dias e 14 dias. Considerando os anos entre 2010 e 2011, e o nivel de significancia
de 5%, destacam-se as precipitacdes diarias defasadas entre 0-19 dias, e entre 22-
28 dias defasados. E considerando o somente ano de 2011, e o nivel de
significancia de 5% (a = 0,05), destacam-se as precipita¢des diarias defasadas entre
0-11 dias, entre 13-16 dias, 18 dias e 27 dias. Todas as correlacbes sao
consideradas fracas (menores que 0,5), conforme Peck et al. (2015). Assim, verifica-
se que a funcdo de correlagdo cruzada referente aos anos entre 2009-2011
apresenta comportamento diferenciado, com a diminuicdo dos coeficientes em toda
a extensao do grafico. Além disso, as fungdes de correlagado cruzada de 2010-2011
e 2011 apresentam um aumento dos coeficientes principalmente entre as
precipitagcbes defasadas em 3-14 dias. Logo, a redugédo dos coeficientes de
correlagdo pode estar relacionada a diminuicdo do regime pluviométrico ocasionado
pelo El Nifo, enquanto que o aumento pode estar associado ao efeito inverso,

proveniente do fendmeno La Nifa.

36



0,50
S
g 040 —e— 2009-2011
2 2010-2011
o 0,30 ¢ —e— 2011
'@® a 2009-2011
ks 0.20 - = = a2010-2011
m U [T\ A J\ cerecere
S
o 0,10 ...............................................................
©
3 0,00
)

-0,10

0 5 10 15 20 25 30
Defasagem (dias)

Figura 14: Funcéo de correlagdo cruzada entre as estagdes P1 e Q1

As Figuras 15 e 16 mostram as fun¢des de autocorrelagdo e autocorrelagao
parcial de Q1, respectivamente. Considerando os anos entre 2009-2011, e o nivel de
significancia de 5%, destacam-se as vazdes diarias entre 1-6 dias, 8-9 dias, 14 dias,
24 dias, 26 e 27 dias defasados. Considerando os anos entre 2010-2011, e um nivel
de significancia de 5%, destacam-se as vazbes diarias entre 1-6 dias, 9 dias, 14
dias, 26 e 27 dias, e 29 dias defasados. E, considerando o ano de 2011, e o nivel de
significancia de 5% (a = 0,05), destacam-se as vazbes diarias entre 1-6 dias, 14
dias, 26 e 27 dias defasados. A vazao defasada em 1 dia tem correlagao linear forte,
e as demais variaveis apresentam correlagao fraca (PECK et al., 2015). Diferente do
que ocorre na funcdo de correlagdo cruzada entre P1 e Qi1, as fungbes de
autocorrelacdo sofrem diminuigdo dos coeficientes nos anos de ocorréncia de La

Nifia e aumento no ano de El Nifo.
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Figura 15: Funcdo de autocorrelagéo da estagédo Q1
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Figura 16: Funcao de autocorrelagdo parcial da estagdo Q1

A partir das correlacbes obtidas anteriormente, optou-se por avaliar cinco
diferentes vetores de entrada. Assim, os modelos propostos para simulagcdo de Q1 e
os respectivos indices de desempenho sdao mostrados na Tabela 5. O modelo que
apresenta o melhor desempenho tem como entradas as precipitacbes defasadas
entre 0-14 dias, e vazdes defasadas entre 1-6 dais (P10:14Q11:6). Analisando os
critérios de desempenho, foram obtidos os indices NSE de 0,658, RSR de 0,58,
PBIAS de -8,72%, RMSE de 0,52 m3s~' e MAPE de 22,35%, o que o classifica como

um bom modelo.

Tabela 5: Desempenhos dos modelos propostos para simulagéo de Q1

Modelo NO NSE RSR RMSE PBIAS MAPE
P106Q116 6 0,635 060 0,54 -858 22,51
P1014Q116 3 0,658 0,58 0,52 -8,72 22,35
7
7

P10:14Q11:14 0,633 0,61 0,54 -11,99 21,16
P10:27Q11:14 0,601 0,63 056 0,11 27,98
P1027Q1127 5 0,542 0,68 0,6 -3,79 26,74

NO-Neurdnios Ocultos; NSE-Coeficiente de Eficiéncia de Nash-Sutcliffe; RSR-Raiz do erro quadratico médio padronizado;

RMSE-Raiz do erro quadratico médio; PBIAS-Viés percentual; MAPE-Erro absoluto percentual médio

As Figuras 17 e 18 mostram as vazdes observadas e simuladas pela RNN-
NARX para simulagcado de Q1, modelo P10:14Q11:6. Os maiores erros percentuais sao
observados nos meses de janeiro (MAPE de 42%) e fevereiro (MAPE de 41%),
periodo em que comegam as chuvas na regido. O maior erro absoluto percentual
corresponde a vazdo observada com 0,643 m3s', no dia 25/01/2014, que foi
simulada com 1,44 m3s™' (superestimagido de 119%). Outro exemplo é a vazéo
observada no dia 03/03/2014, com 2,04 m3s', que foi simulada com 4,21 m3s'
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(superestimacgao de 106%). Por outro lado, os menores erros percentuais estao no
més de junho (MAPE de 10,18%) e o més de julho (MAPE de 12,00%),
correspondentes ao periodo de recessao do hidrograma. O menor erro absoluto
percentual foi de 0,23%, com a vaz&o observada de 0,89 m3s', no dia 08/11/2014,

que foi simulada com 0,89 m3s-".
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Figura 17: Hidrogramas observados e simulados para a estagdo Q1
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Figura 18: Dispersao entre os dados observados e simulados para a estagao Q1

A funcdo de autocorrelagdo do erro descreve a forma como os erros de
previsao estdo relacionados no tempo. A Figura 19 apresenta os resultados da
funcdo de autocorrelagdo de erro para as simulacdes de vazées em Q1. E verificado
que ha presenca de autocorrelagdes significativas nos erros, inseridos no nivel de

significancia de a=5%, com correlagao linear do erro defasado de primeira ordem de

39



0,32. O erro apresenta média 0,06 m3s-! e desvio padrao de 0,49 m3s-'. Isto pode
estar relacionado a variabilidade

Isto pode estar relacionado com a alteragdo da estrutura de autorregresséo,
que pode ser compreendida através das diferentes fungdes de autocorrelagdo, ao se
utilizar dimensbes da série de vazdes (Figura 15). Modelos puramente
autorregressivos usam a prerrogativa da estacionariedade das séries, o que
dificilmente ocorre nas séries hidrologicas em longos periodos, uma vez que
mudang¢as climaticas ou de uso e cobertura do solo podem alterar tais

caracteristicas, ou seja, pode haver mudangas na estrutura de autorregresséo,

média e variancia das vazdes ao longo do tempo.
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Figura 19: Série temporal e autocorrelagdo do erro em Q1

A Figura 20 exibe as curvas de permanéncia observadas e simuladas para a
estacdo Q1. Os indices estatisticos mostram simulagées muito boas, com indices
NSE de 0,894, RSR de 0,32, RMSE de 0,29 m3s', PBIAS de -8,72%, e MAPE de
9,61%. As vazoes de referéncia Qoo e Qos, observadas com 0,64 m3s™! e 0,64 m3s,
respectivamente, foram simuladas com 0,88 m3s' e 0,80 m3s™'. Entretanto, as
vazbes acima de Q2o sofrem com maiores erros percentuais.

Os resultados insatisfatorios nas simulagdes de cheias é consequéncia da
discretizagdo de monitoramento para a pequena dimensdo da bacia hidrografica,
uma vez que o tempo de concentragao € pequeno (horas) para a discretizagao diaria
dos dados de simulacéo (SOARES et al. 2010). Em termos fisicos, apds a saturagéo
da bacia hidrografica através da infiltracdo de agua no solo, toda a chuva é
convertida em escoamento superficial. Assim, apds poucas horas de precipitacoes,
no caso de pequenas bacias, ha grande variabilidade das vazées que podem nao

ser evidenciadas no comportamento médio diario, gerando incertezas para os
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métodos estimadores. No entanto, as vazées minimas sao melhor simuladas, o que
pode ser reflexo da agua estocada nos solos durante os eventos de chuva, que sao
as principais fontes de manutenc¢ao dos regimes de vazao nos periodos em que n&o

sao observadas chuvas no local.
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Figura 20: Curvas de permanéncia observadas e simuladas para a estagdo Q1

O comportamento do RMSE ao longo do treinamento supervisionado do
modelo P10:14Q11:6 pode ser visualizado na Figura 21. O treinamento teve 213
iteragdes, no entanto a iteracdo 6 encontrou os melhores hiperparametros da RNN-
NARX. Os RMSEs de treinamento, validagédo cruzada e teste foram de 0,42 m3s™,

0,38 m3s'e 0,45 m3s™, respectivamente.
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Figura 21: Raiz do erro quadratico médio em fungao das iteragdes do modelo para simulagéo de

vazdes da estagdo Q1
Observando a contribuigao relativa de cada vetor (Figura 22), nota-se que os
vetores de entrada obtiveram semelhantes relevancias na simulacao. Entretanto, os

mais influentes sdo os que apresentam defasagens acima de dois dias. As
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precipitagdes ocorridas em dois dias defasados obtiveram 6,83% de contribuicao,
seguido das vazdes defasadas em trés dias, com 5,65%, e das vazdes defasadas
em dois dias, com 5,50%. Resultados semelhantes foram alcangados por Blanco et
al. (2007) e Blanco et al. (2005) para esta mesma bacia, ao identificar que as
precipitacbes defasadas em 3 dias sdo as respostas impulsionais que apresentam
menores erros em simulacdes lineares. Este resultado reforgca a ideia de que as
RNN-NARX obtiveram a sensibilidade as influéncias dos escoamentos subsuperficial
e subterraneo, que sdo mais lentos e de resposta gradual na saida da bacia, a partir

da implementacgao das variaveis defasadas.
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Figura 22: Contribuigao relativa dos dados de entrada do modelo para simulagéo de vazdes da
estacao Q1

A andlise de sensibilidade do modelo P10:14Q116 diante de diferentes
intervalos de treinamento é apresentada na Tabela 6. De modo geral, os indices
estatisticos apontam boas simulacdes utilizando os anos de 2009-2011 e 2010-
2011. Somente com o ano de 2011, porém, a simulagcdo é classificada como
satisfatoria. Houve um discreto aumento nos indices estatisticos ao utilizar somente
os anos 2010-2011 para treinamento das RNN-NARX, com indices NSE de 0,675,
RSR 0,57, RMSE de 0,51 m3s', PBIAS de -3,81% e MAPE de 20,68%. Este fato
pode estar relacionado ao fenédmeno El Nifio ocorrido em 2009 (INPE, 2021), pois as
correlagdes cruzadas entre Q1 e P1 sdo menores, como evidenciado anteriormente.
Logo, a utilizagdo de dois anos hidrologicos apresentou melhores resultados para
simular o hidrograma observado em 2014, na bacia de Q1. A literatura comenta que
modelos empiricos tém melhores desempenhos com o maior numero de

observagdes disponiveis para treinamento (WUNSCH et al., 2021), porém, a questéao
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qualitativa dos hidrogramas implementados pode ser tdo influente quanto, pois a
simulagao de hidrogramas com eventos extremos, por exemplo, pode ser melhorada
a partir da implementacdo de observacdes semelhantes no momento de
treinamento.

Tabela 6: Sensibilidade do modelo a diferentes resolugdes temporais para simulagées de Q1

Periodo NO NSE RSR RMSE PBIAS MAPE
2009-2011 3 0,658 0,58 0,52 -8,72 22,35
2010-2011 3 0,675 0,57 0,51 -3,81 20,68

2011 3 0553 0,67 0,6 7,32 39,33

NO-Neurdnios Ocultos; NSE-Coeficiente de Eficiéncia de Nash-Sutcliffe; RSR-Raiz do erro quadratico médio padronizado;

RMSE-Raiz do erro quadratico médio; PBIAS-Viés percentual; MAPE-Erro absoluto percentual médio

As Figuras 23 e 24 mostram os hidrogramas e curvas de permanéncia
simuladas para Q1, respectivamente, partir dos diferentes intervalos de treinamento.
Nota-se que a sazonalidade dos hidrogramas e a forma das curvas de permanéncia
simuladas sdo semelhantes ao observado, e entre si. Porém, o alinhamento a longo
prazo € comprometido, principalmente ao utilizar somente o ano de 2011. Isto esta
associado a transferéncia continua do erro, uma vez que a simulagao
autorregressiva de longo periodo se apropria das vazdes simuladas para auxiliar a

descrever o proximo passo de regressao.

7 (13 REY o 00 Lo 20l d 1 N LA LN A MoV s ani L bat Foibhth, S Y Loy 0 0
bEse Bk s SRSV YR R SR TR S
e Y s b § vy ? vyl
6 4 \" ) Iy "‘; 4, 50
Y 5 —~
X ! 100 &
= ©
~ 150 2
o Qo )
e 4 (3]
£ Qe 2009-2011 200 3
= Qe 2010-2011 o
xﬁ 3 ‘ Qe 2011 250 2
S i A T Al - Erro 2009-2011 o
ARl A Erro 2010-2011 300 &
2 i | ‘ A I Erro 2011 5
w vekkdl, 350 £
1 F e e —"Jbld 400
0 450

01/14 02/14 03/14 04/14 05/14 06/14 07/14 08/14 09/14 10/14 11/14 12/14
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43



5 | Teeenl 20
Qo \ <
Qe 2009-2011 ©
~4 Qe 2010-2011 40 £
Fin Qe 2011 o
LA =
<= rro 201 11

o 3 A Erro 2011 60 %
lﬁ §
O
-2 80 2
©
\\ e
11]

1 —_— 100

o
—
N
o

0 20 40 60 80 100
Permanéncia (%)

Figura 24: Curvas de permanéncia observada e simuladas para Q1, utilizando diferentes intervalos

temporais

4.2 RIO PIRANHAS

Localizada no municipio de Abreulandia, no Estado do Tocantins, a estacéo
fluviométrica Fazenda Craveiro (Q2) (Cod. 27370000) monitora a variabilidade das
vazbes diarias de uma sub-bacia do rio Piranhas, cuja area de contribuicdo de
aproximadamente 186 km? (ANA, 2021). As altitudes minima, maxima e média desta
bacia hidrografica sao de 228 m, 679 m e 393 m, respectivamente. Conforme a
classificagao proposta por Embrapa (1999), a declividade da bacia € considerada
suave ondulada, uma vez que a média € de 11,91%. A Figura 25 mostra as
principais caracteristicas desta area de contribuigao.

As classes de solos presentes sdo o Neossolo Quartzarénico Ortico e,
predominantemente, o Plintossolo Pétrico Concrecionario (IBGE, 2021). Cordeiro et
al. (2021) constataram que a capacidade de infiltracdo de agua do Plintossolo
Pétrico Concrecionario esta na faixa de alta a muito alta, em uma area de pastagem
degradada no municipio de Brejinho de Nazaré, local préximo a bacia de Q2. A area
tem grandes percentuais de vegetacdo natural florestal primaria (61,51%), que
podem ser descritas como estrato arbéreo-arbustivo com altura até 18m. E também,
30,34% da area € destinada a pastagem, compostas com vegetagcédo forrageira
herbacea (INPE, 2018).

A estacao pluviométrica Abreulandia (céd. 949000) (P2) esta situada ha cerca

de 20,4 km de distancia de Q2. Neste local, o regime intra-anual das chuvas é
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definido pelo periodo chuvoso, que se estende entre os meses de novembro a abril,

e pelo periodo de estiagem, compreendido entre os meses de maio a outubro, como

mostra a normal climatologica observada em P2 (Figura 26). O clima caracteristico

da regido € o Aw, conforme a classificacdo de Koppen-Geiger, logo, é um clima

tropical de savana, pois 0 més mais seco tem precipitacao inferior a 60 mm, além
das temperaturas sempre acima dos 18°C (ALVARES, 2013; ROLDAO E

FERREIRA, 2019).

N
o v ¥%% E
o i 5
S _ N 27370000
©
g <
S
N
c
L2
1]
°
- =
Ky
T 5
58
§g
ok
S Ss
Est. fluviométrica S ki
—— Drenagem @ [i'4
» Altitude (m) o
o 228 ) %
o— 341 £
S 454 Se
566 8¢
679
| |
49°00'00"W 48°54'00"W
N —~
22 A E §
s_ ¥ =
o~ N 8
5 k7]
> =
]
»
w
[}
&
=
o
28
o O
8 o
o2
g2
iz
4 2o
=] [O=1
S _ ¥ E
5 o2
(o2} .
Classes de solo , E £
I RQo - Neossolo Quartzarénico Ortico 82

Il FFc - Plintossolo Pétrico Concrecionario
| | |
49°00'00"W 48°54'00"W 48°48'00"W

9°36'00"S

9°45'00"S

9°36'00"S

9°45'00"S

N

S‘ 27370000 -
e

] {zo% :

SN e

Est. fluviométrica
Declividade (%)
0,00

17,18
[ 34,36
I 51,54
I 68,72
| |
49°00'00"W 48°54'00"W

Uso do solo

Il Desflorestamento
Pastagem

Il \/egetacao natural florestal primaria

I Vegetacéo natural florestal secundaria

| |
49°00'00"W 48°54'00"W

Figura 25: Caracterizagcao da bacia da estagédo Q2

45

Fonte: Shuttle Radar Topography Mission 2014

Datum: SIRGAS 2000 Geografico

|
48°48'00"

SIRGAS 2000 Geografico
Fonte: TerraClass 2018

|
48°48'00"W



O
8 H
S
/E\LD : OO -
E o L - |
= Q7 . T Yo
s ¥ ! Yo
2 L 1 0O o o I
0)8_
BalurC-E x
(0 !
o O | [ O
£ & 77 ! i o I
% [ E3 EI'
|
98__L' |: L _:__L
[ O v
| 1 8 n
o i g _ 234
o — =L ==
1T 1T 1T 17T 1T 1T 1T T T T 1
S =< =3°>2 a0 24

Figura 26: Normal climatoldgica da estagdo P2 entre 1991-2020
A resolucdo temporal utilizada para produzir as simulagbes de Q2 ¢é
compreendida entre os anos de 2009-2014. Logo, o conjunto de treinamento é
composto pelos anos de 2009-2011; o de validagao é definido pelos anos de 2012-
2013; e o de teste € definido pelo ano de 2014. Esta divisdo dos dados pode ser
visualizada na Figura 27, sob a forma de hidrogramas de vazdes.
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Figura 27: Hidrogramas de vazdes da estacao Q2 entre 2009-2014

A Tabela 7 mostra a estatistica descritiva dos dados utilizados para simulagao
de vazdes da estagdo Q2. O menor e o maior indice de chuva anual sdo observados
nos anos de 2014 e 2009, respectivamente, com 1.508 mm e 2.557 mm. No entanto,
o0 menor e o maior indice de vazbes s&o observados nos anos de 2012 e 2014,
respectivamente, com média de 2,82 m3s' e 5,31 m3s'. Assim como descrito no
capitulo anterior, esta diferenga pode estar associada a anomalias meteoroldgicas,
que alteram padrbes espaciais de distribuicdo da precipitacdo (INPE, 2021;
ESPINOZA et al., 2021).
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Tabela 7: Estatistica descritiva das variaveis P2 e Q2

Variavel Estatistica Treinamento Validacao Teste
hidrologica 2009 2010 2011 2012 2013 2014
P2 Média' (mm/dia) 7,01 4,43 5,13 4,36 5,59 4,13
Anual (mm/ano) 2.557,20 1.618,30 1.872,50 1.597,00 2.040,80 1.508,00

Max (mm/dia) 105,50 58,90 50,80 68,90 56,50 70,60
Min? (mm/dia) 0,60 0,60 0,60 1,90 1,50 0,30

Coef. de variagdo (%) 215,48 211,17 199,38 215,56 184,00 223,30
Q2 Média (m3¥/s) 5,31 3,25 3,81 2,82 3,44 3,04
Max (m3/s) 28,86 18,17 21,60 22,20 37,23 15,81
Min (m?/s) 0,26 0,15 0,04 0,08 0,14 0,16

Coef. de variagdo (%) 96,26 113,44 106,07 118,61 123,53 101,42
Qs0% (mM3/s) 4,37 1,48 2,90 1,41 2,08 1,87
Qos% (M3/s) 0,38 0,17 0,07 0,12 0,18 0,20

'Considerando dias sem chuva
2Acima de zero

A Figura 28 mostra as fungbes de correlagdo cruzada entre Q2 e P2, em
diferentes resolucdes temporais. Considerando os anos entre 2009-2011, e um nivel
de significancia de 5%, destacam-se as precipitagdes diarias defasadas entre 0-30
dias. Considerando os anos entre 2010-2011, e um nivel de significancia de 5%,
destacam-se as precipitacdes diarias defasadas entre 0-29 dias. E, considerando o
ano de 2011, e o nivel de significancia de 5% (a = 0,05), destacam-se as
precipitacdes diarias defasadas entre 0-23 dias, 25-26 dias. Todas as correlagdes
analisadas sao consideradas fracas (PECK et al., 2015). Assim como evidenciado na
bacia hidrografica do capitulo anterior, a fungdo de correlagdo cruzada tem uma
diminui¢cao nos anos de 2009-2011, e aumento com os anos de 2010-2011, podendo
ser atribuido aos fendmenos ENOS, respectivamente, El Nifio moderado e La Nifa
moderado (INPE, 2021).
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Figura 28: Funcéo de correlagéo cruzada entre as estagdes P2 e Q2
As Figuras 29 e 30 mostram as fungdes de autocorrelagdo e autocorrelagao

parcial de Q2, respectivamente. Considerando os anos entre 2009 e 2011, e um
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nivel de significancia de 5%, destacam-se as vazdes didrias defasadas entre 1-5
dias, 9 e 10 dias, 12 dias, 14 dias, 17 dias, e 19 dias. Considerando os anos entre
2010 e 2011, e o nivel de significancia de 5% (a = 0,05), destacam-se as vazdes
diarias entre 1-4 dias, 6 e 9 dias, 12 e 14 dias, 17 dias, 19 dias, 23-24 dias
defasados. E, considerando o ano de 2011, e um nivel de significancia de 5%,
destacam-se as vazdes diarias entre 0-1 dia, 3-4 dias, 9 dias, 12 dias, 14 dias, 17
dias e 24 dias defasados. Somente a vazao defasada em 1 dia apresenta correlagao
forte, e as demais sdo consideradas fracas (PECK et al., 2015). No ano de El Nifio
moderado (2009-2010), ha a diminuicdo dos coeficientes em toda funcédo de
autocorrelagdo. Além disso, no ano de La Nifa moderado (2010-2011), ha o
aumento de tais coeficientes (INPE, 2021). Este efeito € o inverso ao ocorrido na
bacia de Q1, o que pode ser atribuido as caracteristicas da bacia, uma vez que séo

solos diferentes e a declividade média da bacia de Q2 é 3,5 vezes maior que em Q1.
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Figura 29: Fungao de autocorrelagao da estagcao Q2
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Com base nos graficos anteriores, foram propostos seis diferentes vetores de
entrada para simulagdo de Q2. A Tabela 8 mostra tais vetores, bem como o
desempenho estatistico de cada. Constata-se que alguns modelos alcangam
desempenho satisfatorio. Os melhores desempenhos foram evidenciados com as
precipitacbes defasadas entre 0-19 dias e vazbes defasadas em entre 1-12 dias
(P20:19Q21:12). Este modelo obteve indices de desempenho NSE de 0,590, RSR de
0,64, PBIAS de -4,03%, RMSE de 1,97 m3s' e MAPE de 77,76%, classificado com

satisfatorio, segundo os indices propostos por Moriasi et al. (2007).

Tabela 8: Desempenhos dos modelos propostos para simulagédo de Q2

Série-Paralelo

Modelo

NO NSE RSR RMSE PBIAS MAPE
P2011Q215 3 0,484 0,72 2,21 -30,00 110,28
P20.11Q215 3 0,470 0,73 2,24 32,46 112,15
P2023Q215 3 0,458 0,73 2,27 3572 69,89
P20:19Q21:12 3 0,590 0,64 1,97 -4,03 77,76
P2023Q2119 4 0,592 0,64 1,97 -2,64 62,07
P2028Q2119 4 0,558 0,66 2,05 -429 46,58

NO — Neurdnios Ocultos; NSE — Coeficiente de Eficiéncia de Nash-Sutcliffe; RSR — Raiz do erro quadratico médio

padronizado; PBIAS — Viés percentual; MAPE — Erro absoluto percentual médio

As Figuras 31 e 32 mostram as vazdes observadas e simuladas pela RNN-
NARX Q20:19P21:12 em série-paralelo sob a forma de hidrograma de vazdes e grafico
de dispersao, respectivamente. Os maiores erros absolutos percentuais sao
evidenciados nos meses de outubro (MAPE de 153%) e novembro (173%), meses
iniciais do periodo chuvoso local. O maior erro absoluto percentual corresponde a
vazao observada com 0,438 m3s™', no dia 04/11/2014, que foi simulada com 3,219
m3s™! (superestimagido de 635%). Outro exemplo é a vazdo observada no dia
27/10/2014, com 0,472 m3s™, que foi simulada com 2,759 m3s-! (superestimacgédo de
484%). Em contrapartida, os menores erros percentuais estdo nos meses de abril
(MAPE de 22,94%) e julho (MAPE de 15,59%), correspondentes ao inicio do
periodo de estiagem. O menor erro absoluto percentual foi de 0,10%, com a vazao
observada de 3,628 m3s™, no dia 17/05/2014, que foi simulada com 3,624 m3s-'.
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Figura 31: Hidrogramas observados e simulados para a estagdo Q2
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Figura 32: Disperséo entre os dados observados e simulados para a estagcao Q2

A Figura 33 apresenta os resultados da fungéo de autocorrelagao de erro para
as simulacdes de vazdes em Q2. E verificado que ha presenca de autocorrelagdes
significativas nos erros, inseridos no nivel de significancia de a=5%, com correlagéo
linear do erro defasado de primeira ordem de 0,74. O erro tem média de - 0,1 m3s' e
desvio padréo de 1,97 m3s™.
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Figura 33: Série temporal e fungdo de autocorrelagdo do erro em Q2
A Figura 34 exibe as curvas de permanéncia observadas e simuladas para a
estacdo Q1. Os indices estatisticos mostram simula¢gées muito boas, com indices
NSE de 0,945, RSR de 0,23, RMSE de 0,72 m3s™!, PBIAS de -4,03%, e MAPE de
37,22%. Nota-se que a curva de permanéncia simulada tem comportamento
semelhante até as vazbes de referéncia Qis, e acima disso ha tendéncia de
subestimagado. As vazoes de referéncia Qoo e Qos, observadas com 0,28 m3s™' e 0,20

m3s-!, respectivamente, foram simuladas com 0,37 m3s' e 0,35 m3s™".
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Figura 34: Curvas de permanéncia observadas e simuladas para a estagdo Q2
A Figura 35 exibe o RMSE em fungédo do treinamento supervisionado do
modelo P20:19Q21:12. O treinamento teve 213 iteragdes, no entanto a iteracdo 13
encontrou os pesos para a RNN-NARX. O treinamento foi finalizado pelo aumento
continuo do RMSE de validacdo cruzada. Os RMSEs de treinamento, validagao

cruzada e teste foram de 1,88 m3s-!, 1,80 m3s~'e 1,97 m3s™!, respectivamente.
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Figura 35: Raiz do erro quadratico médio em funcao das iteragdes do modelo para simulagédo de

vazodes da estagao Q2
A soma das contribui¢des relativas das precipitagdes defasadas € de 52,50%,
e das vazdbes defasadas foi de 47,50%. Como mostra a Figura 36, as duas variaveis
com maiores percentuais sdo as vazdes defasadas em 10 dias (9,10%) e 1 dia
(8,04%). E, as precipitagbes defasadas com maiores percentuais sao as ocorridas
em 0 dia (7,11%) e 13 dias (6,71%). Debastiani et al. 2016 comentam que a
dependéncia excessiva de vazdes defasadas pode comprometer as simulagdes de

longo periodo, uma vez que a forgante do sistema € a precipitagao.
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Figura 36: Contribuigcio relativa dos dados de entrada do modelo para simulagéo de vazbes da

estacao Q2
A Tabela 9 apresenta a analise de sensibilidade do modelo P20:19Q21:12 a

diferentes intervalos de treinamento. Os indices estatisticos apontam simulacdes
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satisfatorias utilizando os anos de 2009-2011 e 2010-2011. Somente com o0 ano de
2011, porém, a simulagéo é classificada como insatisfatéria (MORIASI et al., 2007).
Assim, utilizando somente os anos de 2010-2011, houve a redugdo de apenas -
0,03% no NSE, e aumento da subestimacao do PBIAS em 0,38%, do MAPE em
13,52%, 0,03 no RSR, e 0,08 m3s' no RMSE. Diante disso, é verificado que a
utilizacdo de dois anos hidrolégicos sao suficientes para apresentar resultados
satisfatorios.

As Figuras 37 e 38 mostram os hidrogramas de vazdes e curvas de
permanéncia simuladas pelos diferentes vetores de sensibilidade. Com o ano de
2011, houve a tendéncia de superestimar os eventos fluviométricos, tanto que as
vazdes acima da vaz&o de referéncia Qro estdo mais distantes do observado. No

entanto, os modelos ajustam-se melhor as vazdes menores que a Qro.

Tabela 9: Sensibilidade do modelo a diferentes resolugdes temporais para simulagées de Q2

Periodo NO NSE RSR RMSE PBIAS MAPE
2009-2011 4 0,592 0,64 1,97 -2,64 62,07
2010-2011 4 0,555 0,67 2,05 -3,02 75,59

2011 4 0370 0,79 245 33,62 76,76

NO — Neurdnios Ocultos; NSE — Coeficiente de Eficiéncia de Nash-Sutcliffe; RSR — Raiz do erro quadratico médio

padronizado; PBias — Viés percentual; MAPE — Erro absoluto percentual médio
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Figura 37: Hidrogramas observado e simulados para Q2, utilizando diferentes intervalos temporais
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Figura 38: Curvas de permanéncia observada e simuladas para Q2, utilizando

diferentes intervalos temporais

4.3 RIO CAETE

A estacdo fluviométrica Arraial (Qs3) (c6d. 32300000) monitorou as vazdes
diarias do rio Caeté durante os anos de 1965 a 1972, em um trecho situado no
municipio de Ourém (Figura 39). A area de contribuicdo desta sub-bacia é de 290
km? (ANA, 2021). As altitudes minima, maxima e média s&o de 25 m, 106 m e 63 m,
respectivamente. A declividade média é de 4,36%, e a maxima é de 28,39%, logo, a
bacia € classificada como suave ondulada (EMBRAPA, 1999, USGS, 2021).

A classe de solo encontrada na bacia de Qs é o latossolo amarelo distrofico
(IBGE, 2021). E, as classes de uso e ocupacgao do solo sdo a vegetagdo natural
secundaria (34,25%), a pastagem (30,09%) e vegetacdo natural primaria (11,41%)
(INPE, 2014). Além disso, a Vila Arraial do Caeté é evidenciada no interior desta
bacia hidrografica, proxima a rodovia PA-112, sob latitude 1°16'44.5"S e longitude
46°52'48.9"W. Diante dessas caracteristicas, trata-se de uma bacia hidrografica com
baixa variabilidade de altitude, baixas declividades, moderado percentual de
vegetacdo natural, o que pode favorecer os escoamentos subsuperficiais e
subterraneos.

A estacado pluviométrica Arraial (P3) (cod. 147000) esta localizada a 25,8 km
da estacdo Q3, na diregcao sudeste. Assim como relatado anteriormente na estagéo
P1, o clima deste local é definido como Am, segundo a classificagdo Koppen-Geiger
(KOPPEN, 1936; GEIGER, 1954), portanto, € um clima tropical com regime de
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mongodes, altos indices pluviométricos, e baixa variabilidade na temperatura, que
sempre esta acima dos 18°C (ALVARES et al., 2013). A variabilidade intra-anual da
precipitagdo na bacia Q3 é caracterizada por dois periodos distintos (MORAES et al.,
2005). O periodo chuvoso é compreendido entre os meses de janeiro e maio, e o
periodo de estiagem é compreendido entre os meses de junho e dezembro,

conforme a normal climatolégica observada na estagao P1 (Figura 40).
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Fonte: Shuttle Radar Topography Mission 2014
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Figura 39: Caracterizacéo da bacia da estagdo Q3
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Figura 40: Normal climatoldgica da estagéo P3 entre 1991-2020
A Figura 41 mostra a divisdo dos trés conjuntos de dados para simulagdo de
vazbes em Qgz, sob a forma de hidrogramas. Os anos entre 1966-1968 definem o
conjunto de treinamento, utilizado para treinar as RNN-NARX e analise exploratéria.
Os anos de 1969-1970 definem o conjunto de validagdo. E, o ano de 1971 é

destinado a avaliacao estatistica do modelo.
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Figura 41: Hidrogramas de vazdes da estacdo Q3 entre 1966-1971

A estatistica descritiva das variaveis Q3 e P3 é mostrada na Tabela 10. O
menor e o maior indice pluviométrico anual sdo encontrados nos anos de 1968 e
1970, respectivamente, com 2.187 mm e 2.633 mm. No entanto, nota-se que a
variabilidade interanual dos anos abordados € baixa, com coeficiente de variacdo de
apenas 6,98%. Embora este fato, os anos entre 1965-1971 apresentaram diferentes
eventos magnitudes de El Nifio e La Nifia (INPE, 2021).
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Tabela 10: Estatistica descritiva das variaveis P3 e Q3

Variavel Estatistica Treinamento Validacao Teste
hidrolégica 1966 1967 1968 1969 1970 1971
P3 Média' (mm/dia) 7,11 6,31 5,98 6,61 7,21 6,61
Anual (mm/ano) 2.593,60 2.303,20 2.187,60 2.411,70 2.633,00 2.413,60
Max (mm/dia) 100,20 74,30 64,50 81,60 107,40 86,00
Min? (mm/dia) 0,10 0,10 0,10 0,50 0,60 0,20
Tempo de retorno (anos) 6,03 2,34 2,23 3,16 7,12 3,18
Coef. de variagao (%) 171,42 169,88 160,79 167,75 168,98 170,24
Q3 Média (m3/s) 3,08 4,34 3,09 3,32 3,71 4,33
Max (m?3/s) 13,80 17,50 7,19 9,00 8,70 10,60
Min (m?3/s) 1,03 1,07 1,07 1,02 0,94 1,39
Coef. de variagao (%) 65,19 74,68 56,48 57,57 46,19 54,14
Qs0% (M3/s) 2,36 3,16 2,45 2,83 3,85 4,05
Qos% (M3/s) 1,17 1,13 1,13 1,07 1,12 1,44

'Considerando dias sem chuva
2Acima de zero

A Figura 42 mostra as fungbes de correlagdo cruzada entre Q3 e P3,

considerando diferentes tamanhos de séries temporais. Considerando os anos entre

1966-1968, e um nivel de significancia de 5%, destacam-se as precipitagdes diarias

defasadas entre 0-27 dias. Considerando os anos entre 1967-1968, e o nivel de

significancia de 5% (a = 0,05), destacam-se as precipita¢des diarias defasadas entre

0-29 dias. E, considerando o ano de 1968, destacam-se as precipitacbes diarias

defasadas entre 0-9 dias, 20 dias, 26 e 27 dias. Todas as correlacdes lineares sao

consideradas fracas, pois sdo menores que 0,5 (PECK et al., 2015). Assim como nas

bacias anteriores, anos hidroldgicos associados a La Nifia apresentam maiores

coeficientes de correlagao linear entre a vazao e as precipitacdes defasadas, como o

caso do La Nina fraco de 1967

-1968 (INPE, 2021).
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Figura 42: Funcéo de correlagdo cruzada entre as estagdes P3 e Q3

As Figuras 43 e 44 mostram as fungdes de autocorrelagdo e autocorrelagao

parcial de Q3, respectivamente. Considerando os anos entre 1967-1969, e um nivel
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de significancia de 5%, destacam-se as vazdes diarias de 1 dia, entre 3-6 dias, 9
dias, 12 dias, 14 dias, 23 dias. Considerando os anos entre 1968-1969, e um nivel
de significancia de 5%, destacam-se as vazdes diarias entre 1 dia, 3 dias, 5 dias, 9
dias, e 14 dias defasados. E, considerando o ano de 2011, e o nivel de significancia
de 5% (a = 0,05), destacam-se as vazbes diarias entre 1 dia, 3 dias, 5 dias, 7 dias
defasados. A vazao defasada em 1 dia é forte, e as demais séo consideradas fracas
(PECK et al., 2015). No entanto, € observado que as vazdes defasadas em 2-3 dias
tém coeficientes proximos ao limiar de 0,5, o que mostra potencialidades preditivas.
A autorregressividade é proveniente de processos estocasticos estacionarios, ou
seja, a propriedade determinante do fendmeno gerador esta presente em toda a
série. Para Marengo e Alves (2005) e Mendonga et al. (2021), na hidrologia, isto esta
diretamente relacionado a maior capacidade de armazenamento de agua no solo, ou

a estruturas de regularizacéo devido a estruturas hidraulicas.
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Figura 43: Fungao de autocorrelagao da estagcao Q3
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Figura 44: Funcao de autocorrelagéo parcial da estagdo Q3
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A partir da analise exploratéria, optou-se por avaliar seis diferentes
configuragdes de dados de entrada. Assim, os modelos propostos para simulagao de
Q3 e os respectivos indices de desempenho estdo contidos na Tabela 11. De modo
geral, todos os modelos treinados em série-paralelo apresentaram desempenhos
muito bons, enquanto que todos os modelos do tipo paralelo alcangcaram um bom
desempenho. O modelo que apresentou o melhor desempenho tem como entradas
as precipitacbes defasadas entre 0-9 dias, e vazdes defasadas de 1-3 dias
(P30:9Q31:3). A RNN-NARX apresentou NSE de 0,877, RSR de 0,35 e PBIAS de
1,52%, logo, sao indices considerados muito bons. Além disso, os indices RMSE e
MAPE foram de 0,82 m3s' e 12,84%, respectivamente, sdo considerados erros
aceitaveis.

Tabela 11: Desempenhos dos modelos propostos para simulagao de Q3

Modelo NO NSE RSR RMSE PBIAS MAPE
P300Q31:3 2 0,877 0,35 0,82 1,52 12,84
P309Q315 3 0,818 0,43 1,00 -958 17,07
P3020Q315 2 0,838 0,40 094 -142 15,16
P3027Q31:5 2 0,837 040 095 -142 1595
2
2

P30:20Q31:9 0,804 0,44 1,04 -944 13,63
P30:27Q31:9 0,827 0,42 0,97 -6,66 15,29

NO — Neur6nios Ocultos; NSE — Coeficiente de Eficiéncia de Nash-Sutcliffe; RSR — Raiz do erro quadratico médio

padronizado; PBias — Viés percentual; MAPE — Erro absoluto percentual médio

Os hidrogramas de vazdes e o grafico de dispersao das vazdes observadas e
simuladas para a estagdo Q2 sdo apresentados nas Figuras 45 e 46,
respectivamente. A RNN-NARX P30:9Q31:3 em série-paralelo apresentou os maiores
erros percentuais inseridos no inicio do periodo chuvoso, meses de janeiro (MAPE
de 20,99%) e fevereiro (MAPE de 22,25%). No dia 30/01/1971, a vazao observada
foi de 2,15 m3s', e a vazdo estimada foi de 3,512 m3s' (superestimagdo de
63,36%). No dia 11/02/1971, a vazao foi observada com 1,61 m3s”', e a vazao foi
estimada com 2,39 m3s™! (superestimagao de 48,42%). Por outro lado, os menores
erros percentuais nos meses de junho (MAPE de 8,93%), julho (MAPE de 6,65%) e
agosto (MAPE de 6,30%). O menor erro percentual foi de 0,10%, evidenciado no dia

04/11/1971 com vazdo observada de 1,67 m3s™' e estimada de 1,668 m3s™'.
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Figura 45: Hidrogramas observados e simulados para a estagdo Q3
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Figura 46: Dispersao entre os dados observados e simulados para a estagao Q3

A Figura 47 apresenta os resultados da fungéo de autocorrelagao de erro para
as simulacdes de vazdes em Q3. E verificado que ha presenca de autocorrelagdes
significativas nos erros, inseridos no nivel de significancia de a=5%, com correlagéo
linear do erro defasado de primeira ordem de 0,76. O erro tem média de 0,07 m3s' e

desvio padréo de 0,82 m3s.
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Figura 47: Série temporal e fungdo de autocorrelagdo do erro em Q3

Analisando as curvas de permanéncia (Figura 48), foram obtidas boas
simulagdes, com indices NSE de 97,54%, RSR de 0,16 e PBIAS de 1,52%, RMSE
de 0,37 m3s' e MAPE de 5,69%. Nota-se que a curva de permanéncia simulada tem
baixos erros percentuais até as vazdes de referéncia Q2, e acima disso ha
tendéncia de superestimagdo de vazdes. As vazdes de referéncia Qoo e Qos,
observadas com 1,50 m3s' e 1,44 m3s', respectivamente, foram simuladas com
1,66 m3s' e 1,48 m3s"

Nestas simulagdes € observado que ha melhores resultados de picos de
vazbes diarias. Esta propriedade deve ser atribuida a autorregressividade das
vazbes defasadas em 2 e 3 dias, o que significa que ha maior capacidade de
retengcdo de agua no interior da bacia, quer seja pelas propriedades fisicas do solo,
quer seja por intervengcdo humana. Além disso, a hipétese de estacionariedade para
o comportamento da vazdo, ao longo do periodo de simulagdo, aparenta ser
coerente, 0 que corrobora com a estatistica descritiva, pois, ha baixo coeficiente de
variagdo e médias proximas entre os conjuntos de dados (MARENGO e ALVES,
2005).

O treinamento supervisionado teve 213 iteragdes, sendo que a configuragao
ideal para a RNN-NARX foi encontrada na iteragdo 22, como mostra a Figura 49.
Sendo assim, os RMSE de treinamento, validagéo e teste foram de 0,19 m3s™', 0,19

m3s-' e 0,30 m3s™! respectivamente.
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Figura 48: Curvas de permanéncia observadas e simuladas para a estagdo Q3

14
o
z 12
o 10 ——RMSE Treinamento
8 RMSE Validagdo
3-8
BL
§<e
(o
e
5 4
8
N2
&
0 ]
0 20 40 . 60 80 100
Iteracdo

Figura 49: Raiz do erro quadratico médio em fungao das iteragdes do modelo para simulagao de

vazdes da estacdo Q3

A contribuicdo relativa de cada variavel preditora do modelo P30.9Q31:3 &
expressa na Figura 50. As precipitacbes defasadas em 7 e 6 dias obtiveram
contribui¢cdo relativa de 22,66% e 14,93%, respectivamente. E, a vazdo defasada
com maior contribuicao € a ocorrida no dia anterior a simulagdo, com 12,01%. Dessa
forma, o éxito das simulagdes, bem como os indices estatisticos expressivos, &
proveniente da relagdo entre a vazao e as precipitacbes defasadas nesses dias em

especifico, permitindo construir a componente sazonal da série.
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A sensibilidade do modelo P30:9Q31:3 a diferentes periodos de treinamento
supervisionado é apresentado na Tabela 12. Os melhores indices estatisticos sao
encontrados, utilizando-se a maior série disponivel, com NSE de 0,877, RSR de
0,35, RMSE de 0,82 m3s™!, PBIAS de 1,52% e MAPE de 12,84%. Utilizando somente
os anos de 1967-1968, ha a diminuicdo de 0,09 do NSE, e aumento de 0,12 no
RSR, 0,27 m3s' de RMSE, 8,97% de PBIAS, e 4,59 de MAPE. E, com o ano de
1968, o indice NSE é reduzido em 0,126, e os erros aumentam consideravelmente,
principalmente o PBIAS, que passa a ser -13,39%. Sendo assim, é constatada a

degradagao dos indices com a reducéo das séries temporais.

Tabela 12: Sensibilidade do modelo a diferentes resolugdes temporais para simulagoes de Q3

Periodo NO NSE RSR RMSE PBIAS MAPE
1966-1968 2 0,877 0,35 0,82 1,62 12,84
1967-1968 3 0,781 047 1,09 10,49 17,43

1968 3 0,751 0,50 1,17 -13,39 16,00

NO — Neur6nios Ocultos; NSE — Coeficiente de Eficiéncia de Nash-Sutcliffe; RSR — Raiz do erro quadratico médio

padronizado; PBias — Viés percentual; MAPE — Erro absoluto percentual médio

As Figuras 51 e 52 mostram os diferentes hidrogramas e curvas de
permanéncia da analise de sensibilidade do modelo para simulacdo de Q3. Ao
utilizar somente o ano de 1968, percebe-se que ha um declinio acentuado entre os
meses de abril e julho. E, as simulagbes realizadas com os anos de 1966-1968 e
1967-1968 tém formas semelhantes. Além disso, as curvas de permanéncia

simuladas tém melhor aderéncia as vazdées menores que Qso.
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Figura 51: Hidrogramas observado e simulados para Q3, utilizando diferentes intervalos temporais
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4.4 RIO CAPIVARA

A estacao fluviométrica cujo nome €& Préximo a Colinas do Tocantins (Q4)
(cod. 23130000) realiza o monitoramento das vazdes do rio Capivara, localizado no
municipio de Colinas do Tocantins, norte do Estado do Tocantins. A bacia
hidrografica tem area de aproximadamente 386 km? (ANA, 2021), as altitudes
minima, maxima e média sdo de 189 m, 594 m e 269 m, respectivamente, e a
declividade é predominantemente suave ondulada (média de 7,03%) (USGS, 2014;
EMBRAPA, 1999). Os mapas de caracterizagdo desta bacia sdo mostrados na
Figura 53.

Ha cinco diferentes classes de solos no interior da bacia de Q4 (IBGE, 2021).
O latossolo vermelho distréfico (37,39%), o neossolo quartzarénico ortico (35,75%) e
o latossolo vermelho-amarelo distrofico (7,73%), que sdo solos de altas taxas de
infiltragcdo. Por outro lado, o argissolo vermelho-amarelo distréfico (9,73%) e o
neossolo litélico distrofico (9,70%) sé&o as classes que apresentam baixas taxas de
infiltracdo, sendo causado principalmente pelo alto teor de argila e baixas
profundidades, respectivamente (SARTORI et al, 2005). O principal uso do solo da
bacia é a pastagem, com percentual de 70,92%, seguido da classe vegetagao
natural secundaria, com 15,64% (INPE, 2018).

A estacdo pluviométrica Colinas do Tocantins (céd. 848000) (P4) esta
localizada na parte sul da bacia de Q4, na area urbana do municipio de Colinas do
Tocantins. Neste local, o regime intra-anual das chuvas é definido pelo periodo
chuvoso, que se estende entre os meses de novembro a abril, e pelo periodo de
estiagem, compreendido entre os meses de maio a outubro, como mostra a normal
climatolégica observada em P4 (Figura 54). O clima caracteristico da regidao € o Aw,
conforme a classificacdo de Koppen-Geiger, logo, € um clima tropical de savana,
pois 0 més mais seco tem precipitacao inferior a 60 mm, com temperatura média de
aproximadamente 26°C (ALVARES, 2013; ROLDAO e FERREIA, 2019).
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As séries histéricas selecionadas para simulacao de Q4 possuem periodos de
medicao entre os anos de 1993-1998. A divisdo dos conjuntos de dados pode ser
visualizada na Figura 55. Foi definido que o conjunto de treinamento é referente aos
dados observados nos anos entre 1993-1995 (1.095 dados); o de validagao é
referente aos anos de 1996-1997 (730 dados); e o de teste é referente ao ano de
1998 (365 dados).
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Figura 55: Hidrogramas de vazdes da estagao Q4 entre 1993-1998

A Tabela 13 mostra a estatistica descritiva das variaveis P4 e Q4. Foi
observado que no ano de 1998 foram evidenciados os menores indices
pluviométricos e fluviométricos. Neste ano, a precipitacdo anual foi de 1.389 mm, e
as vazbes médias e de referéncia Qos foram de 6,84 m3s’' e 0,46 m3s,
respectivamente. Esses indices estdo relacionados ao El Nifo, ocorrido de
magnitude forte em 1997-1998 (INPE, 2021). Entretanto, quando sdo analisados os
maiores indices, € observado divergéncia entre as variaveis. O ano com o maior
indice pluviométrico ocorreu no ano de 1993, com precipitagado anual de 2.310 mm,
enquanto que o maior indice fluviométrico ocorreu no ano de 1994, com vazbes
média e de referéncia Qos, sendo iguais a 11,29 m3s™! e 0,67 m3s™, respectivamente.
Isto esta relacionado a variabilidade intra-anual da precipitagdo, pois as
precipitacbes ocorridas nos meses outubro, novembro e dezembro de 1993

influenciam diretamente no hidrograma caracteristico de 1994.
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Tabela 13: Estatistica descritiva das variaveis P4 e Q4

Variavel Estatistica Treinamento Validacao Teste
hidrologica 1993 1994 1995 1996 1997 1998
Média' (mm/dia) 6,33 4,76 4,92 4,29 413 3,81

Anual (mm/ano) 2.310,00 1.736,60 1.794,40 1.570,40 1.507,40 1.389,40

P4 Max (mm/dia) 90,50 74,20 100,00 90,50 66,60 120,00
Min? (mm/dia) 1,70 1,00 1,50 0,80 0,20 0,10

Coef. de variagdo (%) 229,31 224,82 263,13 276,12 253,64 293,64
Média (m¥/s) 8,08 11,29 8,19 8,37 10,83 6,84

Max (m?3/s) 50,32 45,55 43,30 39,84 60,96 50,01
Q4 Min (m?3/s) 0,67 0,52 0,63 0,56 0,77 0,42

Coef. de variagédo (%) 120,79 114,12 105,22 108,37 121,10 121,29
Qs0% (M3/s) 3,96 4,45 4,59 3,69 3,80 3,16
Qos5% (M3/s) 0,75 0,67 0,71 0,63 0,87 0,46

'Considerando dias sem chuva
2Acima de zero

A Figura 56 mostra as fungbes de correlacdo cruzada entre as séries

As Figuras 57 e 58 mostram as fungdes de autocorrelagdo e autocorrelagao

correlagao cruzada menor que as demais.
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Figura 56: Funcéo de correlagédo cruzada entre as estagdes P4 e Q4
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temporais de Q4 e P4, considerando diferentes resolugdes temporais. Considerando
0os anos entre 1993-1995, e um nivel de significaAncia de 5%, destacam-se as
precipitacoes diarias defasadas entre 0-30 dias. Considerando os anos entre 1994-
1995, e o nivel de significancia de 5% (a = 0,05), destacam-se as precipitacbes
diarias defasadas entre 0-30 dias. E, considerando apenas o ano de 2012, e um
nivel de significancia de 5%, destacam-se as precipita¢cdes diarias defasadas 0-26
dias. Todas as correlagboes tém coeficiente menores que 0,5, o que as classificam

como correlagdes fracas (PECK et al., 2015). O ano de 2015 apresentou funcgéo de

parcial de Q4, respectivamente. Considerando os anos entre 1993-1995, e um nivel
de significancia de 5%,destacam-se as vazdes diarias de 1-2 dias, 10-11 dias, 15

dias, 20 dias e entre 26-28 dias. Considerando os anos entre 1994-1995, e um nivel



de significancia de 5%, destacam-se as vazdes defasadas entre 1-2 dias, 5 dias, 11
dias, 20 dias, entre 26-28 dias defasados. E, considerando apenas o ano de 1995, e
o nivel de significancia de 5% (a = 0,05), destacam-se as vazdes diarias entre 1 dia,
4 dias, 10 dias, 17 e 27 dias defasados. Segundo Peck et al. (2015), a vazao
defasada em 1 dia tém forte correlacdo, entretanto, as demais variaveis sao
consideradas fracas. A funcao de autocorrelagao referente ao ano de 1995 também

apresentou diminuigao dos coeficientes.
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Figura 57: Fungao de autocorrelagao da estacao Q4
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Figura 58: Funcao de autocorrelagdo parcial da estagdo Q4

Com base nas correlagdes expostas anteriormente, foram escolhidos seis
diferentes vetores de entrada para simulagao de vazdées em Q4, de modo que todas
as correlagdes relevantes fossem inseridas gradativamente. A descricdo dos vetores
e os critérios de desempenho das simula¢des constam da Tabela 14. A RNN-NARX

que demonstrou melhor resultado foi a com as precipitacbes defasadas entre 0-11
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dias e as vazdes defasadas em 1-5 dias (P40:11Q41:5), e trés neurbnios na camada
oculta. Este modelo alcangou indices de NSE de 0,725, RSR de 0,52, RMSE de 4,34
m3s™!, PBIAS de -5,87% e MAPE de 64,66%, o que o classifica com bons resultados

(MORIASI et al., 2007).

Tabela 14: Desempenhos dos modelos propostos para simulacao de Q4

Modelo NO NSE RSR RMSE PBIAS MAPE
P4011Q41 3 0,680 0,56 4,69 -9,66 54,97
P40.11Q415 3 0,725 0,52 4,34 -587 64,66
P40.17Q415 3 0,501 0,71 5,85 -20,57 60,6
P4017Q4141 3 0,673 0,57 474 3,16 844
P4026Q4111 2 0,619 0,62 511 -571 70,62
P4027Q4127 3 0,593 0,64 528 -21,29 79,23

NO — Neur6dnios Ocultos; NSE — Coeficiente de Eficiéncia de Nash-Sutcliffe; RSR — Raiz do erro quadratico médio

padronizado; PBIAS — Viés percentual; MAPE — Erro absoluto percentual médio

As Figuras 59 e 60 mostram as vazdes observadas e simuladas pela RNN-

NARX P40:11Q41 em paralelo sob a forma de hidrograma de vazbes e grafico de

dispersao, respectivamente. Os maiores erros percentuais sao observados nos

meses de outubro (MAPE de 174%) e novembro (149%), periodo em que comega o

periodo chuvoso na regido. O maior erro absoluto percentual corresponde a vazao

observada com 0,726 m3s™!, no dia 25/10/1998, que foi simulada com 4,384 m3s'

(superestimacao de 503%). Outro exemplo é a vazao observada no dia 13/11/1998,

com 1,453 m3s™', que foi simulada com 8,446 m3s™' (superestimagao de 481%). No

entanto, os menores erros percentuais estdo no més de setembro (MAPE de 7,34%),

periodo em que sdo observadas as menores vazdées do ano, € o més de margo

(MAPE de 12,67%). O menor erro absoluto percentual foi de 0,07%, com a vazéo

observada de 22,8 m3s-', no dia 12/03/1998, que foi simulada com 22,8 m3s™'.
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Figura 60: Dispersao entre os dados observados e simulados para a estagao Q4
A Figura 61 apresenta os resultados da fungéo de autocorrelagao de erro para
as simulacdes de vazdes em Q4. E verificado que ha presenca de autocorrelagdes
significativas nos erros, inseridos no nivel de significancia de a=5%, com correlagéo
linear do erro defasado de primeira ordem de 0,86. A média e o desvio padrao do

erro sdo iguais a respectivamente -0,40 m3s' e 4,33 m3s™'.
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A Figura 62 mostra as curvas de permanéncia observadas e simuladas para a
estacdo Q4. Os indices estatisticos mostram simulagées muito boas, com indices
NSE de 94,30%, RSR de 0,24, RMSE de 1,98 m3s™, PBIAS de -6,03%, e MAPE de
17,78%. As vazdes de referéncia Qoo € Qos, observadas com 0,50 m3s™' e 0,46 m3s™,
respectivamente, foram simuladas com 0,56 m3s' e 0,50 m3s™".
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Figura 62: Curvas de permanéncia observadas e simuladas para a estagdo Q4
O treinamento supervisionado teve 213 iteragdes, sendo que a configuragao
ideal para a RNN-NARX foi encontrada na iteracdo 40, como mostra a Figura 63.
Apesar da diminui¢do continua do erro de treinamento, 0 mesmo comportamento
nao foi evidenciado nos demais conjuntos de dados. Sendo assim, os RMSE de
treinamento, validagdo e teste foram de 3,96 m3s', 5,79 m3s' e 4,04 m3s’
respectivamente.
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A Figura 64 mostra a contribuicdo relativa das variaveis de entrada para
simulacdo das vazdes em Q4. Com percentuais de 14,30% e 11,19% de
contribuigao relativa, as precipitacbes defasadas em 11 e 10 dias tém relevantes
importancias para as simulagdes. A vazao defasada em 1 dia obteve o percentual de
13,67%. Assim, pode-se subentender que o comportamento das vazdes simuladas
tem relagdo com precipitagcdes defasadas para descrever a dindmica da agua na

bacia, assim como relatado em bacias anteriores.
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Figura 64: Contribuigcio relativa dos dados de entrada do modelo para simulagéo de vazbes da

estacdo Q4
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A sensibilidade da RNN-NARX a diferentes resolugdes temporais € expressa
na Tabela 15. Verifica-se que somente a RNN-NARX em paralelo utilizando os anos
de 1993-1995 alcangaram desempenho estatistico classificado como muito bom, e a
maior parte das proposi¢des atingiram apenas o desempenho bom. A utilizagdo do
ano de 1995 para treinamento supervisionado apresenta diminuicdo do NSE em
11,42%, e aumento do RSR de 0,11, RMSE de 0,88 m3s', da subestimagido em
4,07% e MAPE de 12,26%. Deste modo, a utilizagdo de um ano hidrolégico é
suficiente para a obtencdo de resultados satisfatorios. Porém, as RNN-NARX em
série-paralelo ndao apresentam diminui¢ao clara dos desempenhos estatisticos com a
diminuicdo das amostras, o que é considerado uma boa perspectiva.

A Figura 65 mostra os hidrogramas observado e simulado para a estagdo Q4
no ano de 1998. O hidrograma simulado a partir do ano de 1995 apresenta picos de
vazao acentuados no hidrograma nos meses de janeiro, novembro e dezembro,
sendo as principais fontes de erros do modelo. A simulacdo de 1994-1995
apresentou resultados de subestimacao principalmente entre os meses de fevereiro
e maio.

A Figura 66 mostra a analise sensibilidade do modelo sob a forma de curvas
de permanéncia. Comparando as simulacdes, nota-se que o periodo entre 1993-

1995 se ajustou melhor, com menores erros percentuais.

Tabela 15: Sensibilidade do modelo a diferentes resolugdes temporais para simulagoes de Q4

Periodo NO NSE RSR RMSE PBIAS MAPE
1993-1995 3 0,725 0,52 4,34 -587 64,66
1994-1995 4 0,628 0,61 5,05 -11,47 58,12

1995 4 0,709 0,54 447 -0,25 80,05

NO — Neurbnios Ocultos; NSE — Coeficiente de Eficiéncia de Nash-Sutcliffe; RSR — Raiz do erro quadratico médio

padronizado; PBias — Viés percentual; MAPE — Erro absoluto percentual médio
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4.5 RIO BRAGCO NORTE

A estacéo fluviométrica Base do Cachimbo (Q5) (Céd. 17345000) esta situada
no rio Brago Norte, municipio de Novo Progresso, sul do Estado do Para. A area de
contribuigédo referente a esta estagdo é de aproximadamente 465 km? (ANA, 2021).
Além disso, 42% da area de drenagem estao inseridos na unidade de conservagao
federal, de protecao integral, denominada Reserva Biolégica Nascentes da Serra do
Cachimbo (Figura 67) (SILVA et al., 2021).

A Figura 67 mostra a caracterizagdo da bacia de Q5. Verifica-se que as
altitudes minima, maxima e média da bacia sdo de 455 m, 692 m, 541 m,
respectivamente. As declividades média e maxima da bacia séo, respectivamente,
de 5,24% e 55,34%, ou seja, a declividade da area é classificada como suave
ondulada (EMBRAPA, 1999; USGS, 2014). A classe de solo predominante na bacia
de Q5 é o Neossolo Quartzarénico Ortico (IBGE, 2021). Segundo Sartori et al.
(2005), este tipo de solo apresenta alta taxa de infiltracdo hidrica, e desfaz-se com
facilidade, o que o torna muito susceptivel a erosdo hidrica. Além disso, o uso da
terra € marcado pela formagédo natural florestal (18,33%) e natural nao-florestal
(80,88%) (SILVA et al., 2021), sendo a ultima definida por vegetacdo de campina e
campinarana, muito comuns na regiao (LLERAS e KIRKBRIDE JR, 1978).

Ha 132 km de distancia, na direcao norte a partir da estacdo Q5, esta
localizada a estagao pluviométrica KM 947 BR-163 (P5) (Cod. 855000). O clima local
€ caracterizado como Am, conforme a classificagdo de Koppen-Geiger, ou seja, é
um clima tropical umido, com altos indices pluviométricos anuais e por apresentar
pequeno periodo seco (ALVARES et al., 2013). O periodo chuvoso da regido é
iniciado em outubro e estende-se até o més de abril, e o periodo de estiagem
estende-se desde o més de maio até setembro, como mostra a normal climatolégica

exposta na Figura 68.
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Figura 68: Normal climatoldgica na bacia de Q5 entre 1991-2020
Fonte: Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS, 2020)
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Com o objetivo de realizar as simulagdes de vazdes, as séries temporais Q5 e
P5 foram divididas conforme descrito a seguir. Os anos de 2015-2016 (731 dias)
foram atribuidos ao treinamento das RNN-NARX e analise exploratéria. O ano de
2017 (365 dias) foi utilizado para validagcado cruzada das RNN-NARX. E, o ano de
2018 (365 dias) foi destinado ao teste estatistico dos modelos. A divisdo das séries

temporais é exibida na Figura 69.
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Figura 69: Hidrogramas de vazdes da estagao Q5 entre 2015-2018

A Tabela 16 mostra a descricdo estatistica das variaveis utilizadas para
simulagao das vazoées de Q5. Verifica-se que o ano de 2015 apresentou os menores
indices hidrolégicos, com precipitagcdo anual de 1.970 mm e vaz&do meédia igual a
19 m3s!, enquanto que o ano de 2018 apresentou os maiores indices, com
precipitacdo anual de 4.197 mm e vazdo média de 27 m3s-!. Esta variabilidade pode
estar associada a fenbmenos meteorologicos, pois, os anos hidrologicos de 2015-
2016 apresentaram fortes indices de anomalia climatica, caracterizando-os com o
fendmeno El Nifio. Por outro lado, os anos de 2017-2018 foram alvos de anomalias

positivas, caracterizando-os com o fendmeno La Nina (INPE, 2021).
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Tabela 16: Estatistica descritiva das variaveis P5 e Q5

- . s o Treinamento Validacao Teste
Variavel hidroldgica Estatistica 5015 5016 5017 5018
P5 Média' (mm/dia) 5,40 8,85 9,57 11,50
Anual (mm/ano) 1.970,90 3.237,70 3.491,40 4.197,10
Max (mm/dia) 114,10 104,60 96,30 96,80
Min2 (mm/dia) 0,10 0,50 0,90 11,10
Coeficiente de variagao (%) 285,04 226,38 219,21 185,14
Q5 Média (m?3/s) 19,01 19,84 23,25 27,36
Max (m?3/s) 64,54 75,33 85,68 112,89
Min (m?3/s) 9,76 9,06 8,52 9,48
Coeficiente de variagao (%) 0,52 0,59 0,63 0,65
Qso% (M3/s) 15,33 15,33 17,85 21,93
Qos% (M3/s) 10,64 9,62 10,19 10,45

'Considerando dias sem chuva
2Acima de zero

A Figura 70 mostra as fungdes de correlagdo cruzada entre P5 e Q5 em
diferentes intervalos de séries temporais. Adotando os anos de 2015 e 2016, e nivel
de significancia de 5%, destacam-se as precipita¢des diarias defasadas entre 0-11
dias. E, adotando apenas o ano de 2016, e o nivel de significancia de 5% (a = 0,05),
destacam-se as precipitacdes diarias defasadas 0-3 dias. Todos os coeficientes de
correlagcdo sao considerados fracos, uma vez que o maior coeficiente é de
aproximadamente 15%. Esta baixa correlagéo linear pode estar vinculada a distancia

entre a bacia e a estacio pluviométrica.
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Figura 70: Funcéo de correlagédo cruzada entre as estagdes P5 e Q5
As Figuras 71 e 72 mostram as fungcdes de autocorrelagdo e autocorrelagao
parcial da estacao Base do Cachimbo, respectivamente. Considerando os anos de
201 e 2016, e um nivel de significancia de 5%, destacam-se as vazdes defasadas
em 1 dia, 4 dias, 6 dias, 9 dias, 13 dias, 19 dias e 26 dias. E, considerando o ano de
2016, e o nivel de significancia de 5% (a = 0,05), destacam-se as vazdes diarias de

1 dia, 4 dias, 9 dias, 13 dias e 19 dias. Somente a vazdo defasada em 1 dia tem
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correlagao forte (PECK et al.,, 2015). A fungdo de autocorrelagcdo de 2015-2016

apresentou maiores coeficientes de correlacao linear.
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Figura 71: Fungao de autocorrelagdo da estacdo Q5
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Figura 72: Funcéo de autocorrelagéo parcial da estagdo Q5

Diante disso, cinco configuragdes de dados de entrada foram escolhidas para
realizar as simulagdes de Q5. A Tabela 17 mostra tais vetores de entrada, além dos
respectivos indices estatisticos. Verifica-se que todos os modelos apresentaram
resultados insatisfatérios para a simulagdo de hidrogramas. Os modelos com
precipitagcbes defasadas entre 0-11 dias e vazbes defasadas entre 1-4 dias (Po:11
Q1:4) apresentaram os melhores resultados. Os critérios de desempenho obtidos foi
de NSE de 0,443, RSR de 0,75, PBIAS de 4,31%, RMSE de 13,21 m3s' e MAPE de
32,75%.
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Tabela 17: Desempenhos dos modelos propostos para simulagcao de Q5

Modelo NO NSE RSR RMSE PBIAS MAPE

P503Q51 4 0,378 0,79 13,96 -1,79 35,26
P50:11Q514 4 0,443 0,75 13,21 4,31 32,75
P50:11Q51:9 4 0,359 0,8 14,17 -8,01 27,61
P50:13Q5113 4 0,271 0,85 1511 -12,48 27,94

P50:19Q51:19 4 0,359 0,8 14,16 -9,23 27,48

NO — Neurdnios Ocultos; NSE — Coeficiente de Eficiéncia de Nash-Sutcliffe; RSR — Raiz do erro quadratico médio

padronizado; PBIAS — Viés percentual; MAPE — Erro absoluto percentual médio

A Figura 73 mostra os hidrogramas observados e simulados, e a Figura 74
mostra a dispersdo entre as vazdes observadas e simuladas para Qs. E evidente que
o modelo apresenta dificuldades na simulacdo de vazdes acima dos 50 m3s'. Os
meses com 0s menores erros percentuais foram janeiro (MAPE de 19,60%),
fevereiro (MAPE de 21,48%) e marco (MAPE de 17,99%). A maior vazdo da série
histérica ocorreu no dia 25/11/2018, sendo igual a 112,89 m3s™! e foi simulada com
valor de 26,08 m3s-', ocasionando subestimacgdo de 76,90%. Além disso, a vazao de
110,41 m3s™!, observada em 12/04/2018, foi simulada com 47,11 m3s™!, acarretando
subestimacédo de 57,33%. O maior erro percentual de simulacdo € evidenciado no
dia 19/09/2018, onde a vazao observada é de 10,49 m3s™ e a vazéo simulada é de
23,97 m3s™', gerando erro absoluto percentual de 128,53%. Outro exemplo é a vazao
do dia 16/09/2018, observada com 10,19 m3s™ e simulada com 22,28 m3s-!, com
erro de 118,55%. Por outro lado, os menores erros sao apresentados em valores
préximos a média de vazdes observada em 2018 (27,36 m3s'), como, por exemplo,
a ocorrida em 21/05/2018, observada com 27,78 m3s™ e simulada com 28,26 m3s,

gerando erro absoluto percentual de 1,73%.
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Figura 73: Hidrogramas observados e simulados para a estagdo Q5
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A Figura 75 apresenta os resultados da fungéo de autocorrelagao de erro para
as simulacdes de vazdes em Q5. E verificado que ha presenca de autocorrelagdes
significativas nos erros, inseridos no nivel de significancia de a=5%, com correlagéo
linear do erro defasado de primeira ordem de 0,81. Os erros apresentam média de
0,90 e desvio padréo de 13,12 m3s™'.
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Figura 75: Série temporal e fungéo de autocorrelagdo do erro em Q5

Notou-se que as curvas de permanéncia apresentaram melhor ajuste com
precipitacbes defasadas entre 0-11 dias e vazbdes defasadas entre 1-9 dias
(P50:11Q51:9). A Figura 76 mostra tais simulagdes. Assim, a RNN-NARX série-
paralelo obteve indices NSE de 0,780, RSR de 0,47, PBIAS de -8,01%, RMSE de
8,29 m3s' e MAPE de 8,71%. Mesmo assim, ainda é verificado que os erros mais
discrepantes ainda estdo em vazbes acima dos 50 m3s!, acima das vazbes de
referéncia Qzo. As vazoes de referéncia Qoo e Qos, observadas com 11,40 m3s™ e
10,49 m3s™!, respectivamente, foram simuladas com 10,61 m3s' e 10,58 m3s™".

Além do aspecto de discretizacdo diaria de vazdes em pequenas bacias, a
variabilidade espacial entre chuva monitorada na estagdo meteorolégica e a
efetivamente ocorrida na bacia de Q5 pode ser outro motivo destes resultados, uma
vez que ha 132 km separando-as. Em outras palavras, a precipitacdo ocorrida no
interior da bacia, que geram os efeitos do ciclo hidrolégico, podem n&o ser as
mesmas observadas no ponto de monitoramento. Além disso, o melhor ajuste das
vazbdes minimas pode estar associado ao padrao sazonal encontrado nas vazdes
defasadas, ou seja, ter maior dependéncia da autorregressao.

A redugao do RMSE em funcgao das interagcdes do treinamento supervisionado
do modelo Po:11Q1:9 é exibida na Figura 77. Embora, o RMSE de treinamento tenha
diminuido continuamente, os RMSEs de validacdo e teste ndo acompanham tal
comportamento, em que estes dois ultimos conjuntos alcangaram o menor erro na
iteracdo 15. Logo, utilizar os parametros pesos e biases, além desta iteragédo, € um
erro, pois configuraria overffiting. Sendo assim, a configuragdo de RNN-NARX
escolhida para simulagao € a da iteragao 15.
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Figura 77: Raiz do erro quadratico médio em fungao das iteragdes do modelo para simulagao de

vazoes da estagao Q5

A Figura 78 mostra a contribuigdo relativa das variaveis para simulagao das
vazbes em Qs. A dependéncia autorregressiva é notavel, pois 67,28% da
contribuicao relativa & proveniente das vazdes defasadas. A maior contribuicdo é
realizada pela vazao defasada Qst-1), com 21,93%. A maior contribuicdo de uma
variavel de precipitacao € a Pst-3), com 5,52%. Este resultado reforga a ideia de que
a distancia de 132 km entre a bacia e a estagdo meteoroldégica pode estar

dificultando simulacdes mais precisas, principalmente de picos de vazdes.
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Figura 78: Contribuigcao relativa dos dados de entrada do modelo para simulagéo de vazdes da
estacado Q5

A analise de sensibilidade do modelo para simulacdo de Q5 € apresentada na
Tabela 18. E possivel notar que ndo ha diferencas significativas nos indices de
desempenho ao realizar o treinamento supervisionado com diferentes anos
hidrolégicos. Ainda assim, todos os modelos séo classificados como insatisfatorios
para simulagdo dos hidrogramas (Figura 79). Utilizando o ano de 2016, a curva de
permanéncia (Figura 80) obteve indice NSE de 0,728, RSR de 0,52, PBIAS de -
6,45%, RMSE de 9,23 m3s' e MAPE de 14,34%, porém, as vazdes acima de Q2o

ainda ndo sio simuladas de forma satisfatoria.

Tabela 18: Sensibilidade do modelo a diferentes resolugdes temporais para simulagoes de Q5

Periodo NO NSE RSR RMSE PBIAS MAPE

2015-2016 4 0,359 0,8 14,17 -8,01 27,61
2016 4 0324 0,82 14,55 -645 29,84

NO — Neurbnios Ocultos; NSE — Coeficiente de Eficiéncia de Nash-Sutcliffe; RSR — Raiz do erro quadratico médio

padronizado; PBias — Viés percentual; MAPE — Erro absoluto percentual médio
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4.6 SINTESE DOS RESULTADOS
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Figura 81: Boxplots dos indices de critérios obtidos

Os resultados demonstram que a capacidade de autocorrelacdo das vazdes
diarias, uma caracteristica estocastica muitas vezes atribuida a retengcado de agua no
interior da bacia hidrografica, é fator preponderante para as simulagdes via RNN-
NARX (como ocorre em Q3). Além disso, com auxilio das precipitagées defasadas,
as simulagdes descreveram bem, principalmente, a recessédo dos hidrogramas. Por
esta ultima variavel se tratar de uma variavel exdgena, passivel de mudanga de
comportamento ao longo do tempo, as incertezas na simulagéo de longos periodos é
reduzida, uma vez que a principal forcante de agua no sistema é a chuva. As
pequenas bacias hidrograficas aqui analisadas apresentam caracteristicas
semelhantes, como a declividade variando entre o plano e o suave ondulado, tem
solos com alto potencial de infiltracdo. Além disso, a analise de sensibilidade
mostrou que dois anos hidrolégicos € suficiente para o treinamento supervisionado
das RNN-NARX.

Para simulacdo de vazdes de cheias, a discretizagado diaria das vazdes em
pequenas bacias e a variabilidade espacial da precipitagdo, principalmente em anos
de anomalias meteoroldgicas, devem ser melhor analisadas. O principal exemplo
disto, é a bacia de Q5, na qual as vazdes podem ter sido simuladas majoritariamente
pela autorregressao, conforme a interpretagcado da CR de Garson.

5 CONCLUSAO

A analise exploratéria baseada nas fungdes de correlacdo cruzada e

autocorrelacao parcial mostraram potenciais vetores de entrada para as RNN-NARX.

No entanto, esta abordagem ainda é subjetiva para identificagdo de sistemas
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dindmicos nao lineares, uma vez que, a relagao entre as variaveis nao é totalmente
compreendida por correlagdes lineares. Este fato é facilmente interpretado quando
ha a comparacéo entre os vetores de entrada propostos e a contribui¢ao relativa de
Garson de cada modelo.

As simulagdes de vazdes dos modelos hidroldégicos baseados em RNN-
NARX, orientados as pequenas bacias amazdnicas, variou entre o insatisfatério e o
muito bom. E observada, também, a tendéncia de subestimar vazdes. A contribuicdo
relativa de Garson reforga o argumento de que as vazdes diarias de pequenas
bacias amazébnicas podem ser simuladas, principalmente, a partir de vazbdes e
precipitacbes defasadas, pois auxiliam a descrever o comportamento dos
escoamentos subsuperficial e subterraneo.

As principais fontes de incertezas dos modelos s&o provenientes de
variabilidade espacial da precipitacdo, principalmente em anos de anomalias
meteoroldgicas, e de discretizagdo, que resulta na dificuldade em descrever os picos
de vazdes em pequenas bacias. No entanto, os resultados mais expressivos para
simulagcdo de 365 dias sao provenientes dos potenciais autorregressivos de cada
bacia, que € uma caracteristica estocastica, muitas vezes atribuida a capacidade de
estocagem de agua no solo ou regularizagao de vazdes por intervengao humana.

A analise de sensibilidade dos modelos RNN-NARX frente a diferentes
intervalos de treinamento mostrou que, de modo geral, s&o alcangados resultados
satisfatorios para quatro das cinco bacias hidrograficas (Marambaia, Fazenda
Craveiro, Arraial e Préximo a Colinas do Tocantins), a partir da implementagao de 2
anos para o treinamento supervisionado das RNN-NARX. No contexto pratico, os
modelos aqui discutidos sao aplicaveis, principalmente, para simulacdo de vazdes
minimas. Assim, podem ser aplicados para avaliagao de disponibilidade hidrica.

Sugere-se, como trabalhos futuros, a implementacdo de técnicas de pré-
tratamento dos dados de entrada, tal como a Transformada de Wavelet Discreta.
Além disso, a utilizagdo de algoritmos genéticos podem melhorar a escolha dos
vetores de entrada ideais, ou até mesmo melhorar a determinagcdo de parametros

pesos e bias ideais, na etapa de treinamento.
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APENDICE

APENDICE A — Algoritmo da RNN-NARX

%Universidade Federal do Para - UFPA

%Programa de Pds-Graduagédo em Eng. Civil - PPGEC

%Area de concentragdo em Recursos Hidricos e Saneamento Ambiental
%RNN-NARX para simulagao de hidrogramas de pequenas bacias

%Carregar conjuntos de dados
%Marambaia Fazenda_Craveiro Arraial Proximo_Colinas_Tocantins Base_do_Cachimbo

load Dataset Proximo_Colinas_Tocantins;
Dados = Proximo_Colinas_Tocantins;

clear Proximo_Colinas_Tocantins

% Informacgbes fundamentais da arquitetura
A_Treinamento = 'trainlm’;

Mode = "open’;

Def P =0:11;
Def_Q = 1:5;
NO = §;

% Definicdo do particionamento dos conjuntos de dados
Treinamento_inicial ='01/01/1993";

Treinamento_final = '31/12/1995";

Validacao_inicial ='01/01/1996";

Validacao_final ='31/12/1997";

Teste_inicial ='01/01/1998';

Teste_final = '31/12/1998";

%Conjuntos de treinamento e validagao cruzada

Treinamento = Dados((Dados.Data >= Treinamento_inicial) & (Dados.Data <= Teste_final), :);
P_treinamento = Treinamento.P;

Q_treinamento = Treinamento.Q;

clear Treinamento

%Conjunto de teste

Max_atraso = max([Def_P,Def_QJ);

Atraso_Teste = datetime(Teste_inicial, 'InputFormat’, 'dd/MM/yyyy', 'Format','preserveinput’)-
days(max(Max_atraso));

Teste = Dados((Dados.Data >= Atraso_Teste) & (Dados.Data <= Teste_final), :);

P_teste = Teste.P;

Q_teste = Teste.Q;

clear Teste Atraso_Teste Dados
% Matriz padrao de RNN
X_tr = tonndata(P_treinamento,false,false);

T_tr = tonndata(Q_treinamento,false,false);

X _te = tonndata(P_teste,false,false);
T_te = tonndata(Q_teste,false,false);

clear P_treinamento P_teste Q_treinamento Q_teste
% Construgao da RNN-NARX

net = narxnet(Def_P, Def_Q, NO, Mode,A_Treinamento);
net.inputs{1}.processFcns = {'mapminmax'};
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if isequal(Mode, 'open')
net.inputs{2}.processFcns = {'mapminmax'};
else

net.outputs{2}.processFcns = {'mapminmax'};
end

clear A_Treinamento

net.layers{1}.transferFcn = 'tansig’;
net.layers{2}.transferFcn = 'purelin’;
[x,xi,ai,Q] = preparets(net,X_tr,{},T_tr);

clear X_tr T _tr

net.trainParam.epochs = 1000;
net.trainParam.goal = 0.005;
net.trainParam.max_fail = 200;

d1 = datetime(Treinamento_inicial, 'InputFormat’, 'dd/MM/yyyy', 'Format','preserveinput’);
d2 = datetime(Treinamento_final, 'InputFormat’, 'dd/MM/yyyy', 'Format','preserveinput');
d3 = datetime(Validacao _inicial, 'InputFormat’, 'dd/MM/yyyy', 'Format','preserveinput’);
d4 = datetime(Validacao_final, 'InputFormat’, 'dd/MM/yyyy', 'Format','preserveinput');

d5 = datetime(Teste_inicial, 'InputFormat’, 'dd/MM/yyyy', 'Format','preserveinput');

d6 = datetime(Teste_final, 'InputFormat', 'dd/MM/yyyy', 'Format','preserveinput'’);

Trein = caldays(between(d1,(d2+1),'days'));

Valid = caldays(between(d3,(d4+1),'days"));

Test = caldays(between(d5,(d6+1),'days"));

Total = caldays(between(d1,(d6+1),'days"));

clear Teste_final Teste_inicial Validacao _inicial Validacao_final Treinamento_inicial Treinamento_final

net.divideFcn = 'divideblock’;
net.divideMode = 'time’;
net.divideParam.trainRatio = Trein/Total;
net.divideParam.valRatio = Valid/Total;
net.divideParam.testRatio = Test/Total;

clear d1 d2 d3 d4 d5 d6

net.performFcn = 'mse’;
net.performParam.regularization = 0.1;

[net,Relatorio] = train(net,x,Q,xi,ai);

%Treinamento da RNN-NARX
Qe = net(x,xi,ai);

Qe = cell2mat(Qe");

Q = cell2mat(Q');

clear x xi ai

Qe_treinamento = Qe(1:Trein- Max_atraso);
Q_treinamento = Q(1:Trein - Max_atraso);

Qe_validacao = Qe(Trein+1-Max_atraso:Trein-Max_atraso+Valid);
Q_validacao = Q(Trein+1-Max_atraso:Trein-Max_atraso+Valid);

Qe_teste = Qe(Trein+Valid-Max_atraso+1:end);
Q_teste = Q(Trein+Valid-Max_atraso+1:end);
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clear Max_atraso Trein Valid Test Total Q Qe

%Convertendo Open-loop em Closed-loop
netc = closeloop(net);
[x,xi,ai,t] = preparets(netc,X_te,{},T_te);

Qe_teste_closed = netc(x,xi,ai);
Qe_teste_closed = cell2mat(Qe_teste_closed');

cleart X _te T_te ai xi x

% Contribuicdo Relativa de Garson (1991)
lw = net.IW,
Lw = net.Lw;

if isequal(Mode, 'open')
Pesos_P = cell2mat(Iw(1));
Pesos_Q = cell2mat(lw(1,2));
Pesos_P_Q = abs(horzcat(Pesos_P, Pesos_Q));
Pesos_Neuronios = abs(cell2mat(Lw(2,1)));
Mult_Pesos = Pesos_P_Q .* Pesos_Neuronios';

Soma_Pesos = sum(Mult_Pesos);
Soma_total = sum(Soma_Pesos);
CR = (Soma_Pesos .* 100) ./ Soma_total;

clear Pesos P Pesos Q Pesos P_Q Pesos Neuronios Mult Pesos Soma_Pesos Soma_total Iw
Lw Mode Def P Def Q
else

Pesos_P = cell2mat(lw(1));

Pesos_Q = cell2mat(Lw(1,2));

Pesos_P_Q = abs(horzcat(Pesos_P, Pesos_Q));

Pesos_Neuronios = abs(cell2mat(Lw(2,1)));

Mult_Pesos = Pesos P_Q .* Pesos_Neuronios';
Soma_Pesos = sum(Mult_Pesos);
Soma_total = sum(Soma_Pesos);

CR = (Soma_Pesos .* 100) ./ Soma_total;
clear Pesos_P Pesos_Q Pesos_P_Q Pesos_Neuronios Mult_Pesos Soma_Pesos Soma_total Iw
Lw Mode Def P Def Q
end
% Avaliagcao estatistica
[NSE, RSR, RMSE, PBias, MAPE] = Desempenho(Q_treinamento, Qe_treinamento);
A =[NO, NSE, RSR, RMSE, PBias, MAPE];

[NSE, RSR, RMSE, PBias, MAPE] = Desempenho(Q_validacao, Qe_validacao);
B = [NO, NSE, RSR, RMSE, PBias, MAPE];

[NSE, RSR, RMSE, PBias, MAPE] = Desempenho(Q_teste, Qe_teste);
C =[NO, NSE, RSR, RMSE, PBias, MAPE];

[NSE, RSR, RMSE, PBias, MAPE] = Desempenho(Q_teste, Qe_teste closed);
D = [NO, NSE, RSR, RMSE, PBias, MAPE];

Criterios_Desempenho_OpenLoop = vertcat(A,B,C);
Criterios_Desempenho_ClosedLoop = vertcat(A,B,D);
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clear A B C D NSE RMSE MAPE PBias RSR

%Curvas de permanéncia

a = 1:size(Qe_teste);

b = 1:size(Qe_treinamento);
¢ = 1:size(Qe_validacao);

Perm_Teste = (a./((max(a))+1));
Perm_Trein = (b./((max(b))+1));
Perm_Val = (c./((max(c))+1));

Perm_Teste_obs = sort(Q_teste, 'descend’);
Perm_Teste_est_open = sort(Qe_teste, 'descend");
Perm_Teste_est_closed = sort(Qe_teste closed, 'descend');

Perm_Trein_Obs = sort(Q_treinamento, 'descend’);
Perm_Trein_Est = sort(Qe_treinamento, 'descend’);

Perm_Val_Obs = sort(Q_validacao, 'descend');
Perm_Val_Est = sort(Qe_validacao, 'descend');

clearabc
%Avaliagao estatistica curvas de permanencia

[NSE, RSR, RMSE, PBias, MAPE] = Desempenho(Perm_Trein_Obs, Perm_Trein_Est);
A =[NO, NSE, RSR, RMSE, PBias, MAPE];

[NSE, RSR, RMSE, PBias, MAPE] = Desempenho(Perm_Val_Obs, Perm_Val_Est);
B = [NO, NSE, RSR, RMSE, PBias, MAPE];

[NSE, RSR, RMSE, PBias, MAPE] = Desempenho(Perm_Teste obs, Perm_Teste est open);
C = [NO, NSE, RSR, RMSE, PBias, MAPE];

[NSE, RSR, RMSE, PBias, MAPE] = Desempenho(Perm_Teste_obs, Perm_Teste_est closed);
D =[NO, NSE, RSR, RMSE, PBias, MAPE];

Curvas_Permanencia_OpenlLoop = vertcat(A,B,C);
Curvas_Permanencia_ClosedLoop = vertcat(A,B,D);

clear A B C D NSE RMSE MAPE PBias RSR NO

%Funcbdes dos critérios de desempenho;

function [NSE, RSR, RMSE, PBias, MAPE] = Desempenho(y,ye)
NSE = 1-((sum((y-ye)."2))./(sum((y-mean(y))."2)));

RMSE = sqrt(sum((y-ye).*2)./(length(y)));

PBias = 100.*((sum(ye-y))./(sum(y)));

MAPE = 100.*(sum(abs(ye-y)./y))/length(y);

RSR = RMSE./std(y);

end
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